

CG2H30070

70 W, 0.5-3.0 GHz, 28 V, RF Power GaN HEMT

Cree's CG2H30070 is an internally matched gallium nitride (GaN) high electron mobility transistor (HEMT). The CG2H30070, operating from a 28 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CG2H30070 ideal for linear and compressed amplifier circuits. The transistor is available in a flange package.

Package Type: 440224 PN: CG2H30070F

Typical Performance Over 0.5 - 3.0 GHz (T_c = 25°C)

Parameter	500 MHz	1000 MHz	1500 MHz	2000 MHz	2500 MHz	3000 MHz	Units
Small Signal Gain (S21)	16.7	15.3	17.3	15	16.3	14.8	dB
Gain @ P _{in} 39 dBm	10.3	10.4	10.6	9.8	11.4	10.5	dB
Output Power @ P _{in} 39 dBm	85	88	90	76	109	89	W
EFF @ P _{in} 39 dBm	63	57.5	55.6	63.4	62.1	59.8	%

Note: Conditions CW

Features

- 0.5 3.0 GHz Operation
- 70 W P_{OUT} typical at 28 V
- 10 dB Power Gain
- 58 % Drain Efficiency
- Internally Matched

Applications

- Broadband Amplifiers
- Milcom
- Radar
- Data Link

Large Signal Models Available for ADS and MWO

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	Volts	25°C
Gate-to-Source Voltage	$V_{\sf GS}$	-10, +2	Volts	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T _J	225	°C	
Maximum Forward Gate Current	I _{GMAX}	28.8	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	12	Α	25°C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	R _{eJC}	1.5	°C/W	85°C, CW
Case Operating Temperature ²	T _c	-40, +150	°C	

Note:

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-2.8	-2.3	V _{DC}	$V_{DS} = 10 \text{ V, } I_{D} = 28.8 \text{ mA}$
Saturated Drain Current ²	I _{DS}	23	28.8	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{\rm BR}$	120	-	-	V _{DC}	$V_{GS} = -8 \text{ V, I}_{D} = 28.8 \text{ mA}$
RF Characteristics ^{2,3} (T _c = 25°C,	RF Characteristics ^{2,3} (T _c = 25°C, F ₀ = 3000 MHz unless otherwise noted)					
Small Signal Gain	G _{ss}	-	17.8	-	dB	$V_{\rm DD}$ = 28 V, $I_{\rm DQ}$ = 1.0 A, $P_{\rm IN}$ = 0 dBm, CW
Power Gain	$G_{_{P}}$	-	12.4	-	dB	V_{DD} = 28 V, I_{DQ} = 1.0 A, P_{IN} = 39 dBm, CW
Output Power	P _{out}	-	50.4	-	dBm	$V_{\rm DD}$ = 28 V, $I_{\rm DQ}$ = 1.0 A, $P_{\rm IN}$ = 39 dBm, CW
Drain Efficiency ⁴	η	-	70	-		V_{DD} = 28 V, I_{DQ} = 1.0 A, P_{IN} = 39 dBm, CW
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No damage at all phase angles, V_{DD} = 28 V, I_{DQ} = 1.0 A, P_{OUT} = 100 W CW
Dynamic Characteristics						
Input Capacitance	C _{GS}	-	68.1	-	pF	V _{DS} = 28 V, V _{gs} = -8 V, f = 1 MHz
Output Capacitance	C _{DS}	-	11.3	-	pF	$V_{DS} = 28 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$
Feedback Capacitance	C_{GD}	-	1.49	-	pF	$V_{DS} = 28 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$

Notes:

Measured on wafer prior to packaging per side of device.

Scaled from PCM data.

Scaled in FCM data.

3 Measurements are to be performed using Cree test fixture AD-838279F-TB2 (Flange)

4 Drain Efficiency = P_{OUT} / P_{AC} 5 Capacitence values are for each side of the device.

¹ Current limit for long term, reliable operation ² Refer to the Application Note on soldering at www.cree.com/RF/Document-Library

³ See also, the Power Dissipation De-rating Curve on Page 8.

CG2H30070F Typical Performance

Figure 1 - Small Signal Gain and Return Losses of the CG2H30070-AMP vs Frequency V_{DD} = 28 V, I_{DO} = 1.0 A

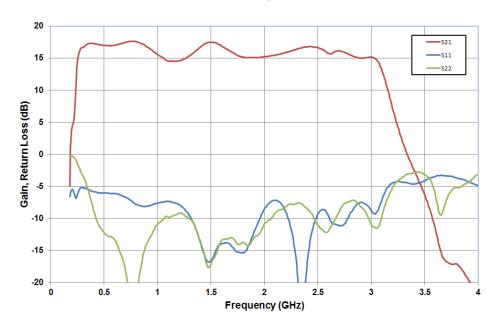


Figure 2 - Output Power and Efficiency vs. Frequency CG2H30070-TB2 CW Operation, $V_{\rm DD}$ =28 V, $I_{\rm DO}$ =1.0 A, @ $P_{\rm IN}$ 39 dBm

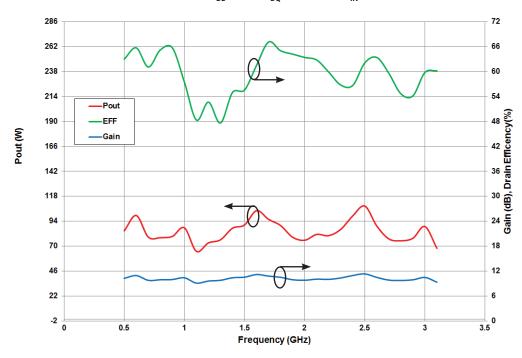


Figure 3 - Gain and Drain EFF vs. Output Power at Various Frequencies CG2H30070-TB2
CW-Operation, $V_{\rm DD}$ =28 V, $I_{\rm DO}$ =1.0 A

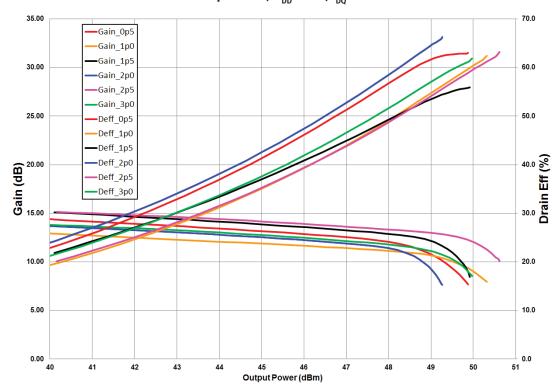
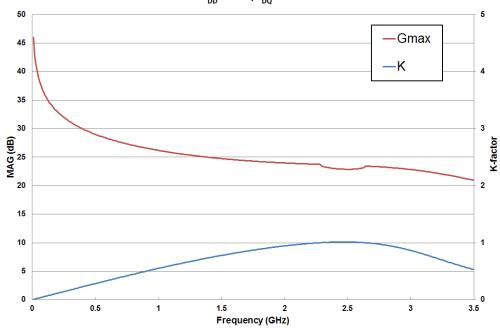



Figure 4 - Simulated Maximum Available Gain and K-factor of the CG2H30070 V_{DD} =28 V, I_{DO} =1.0 A

CG2H30070F Typical Performance

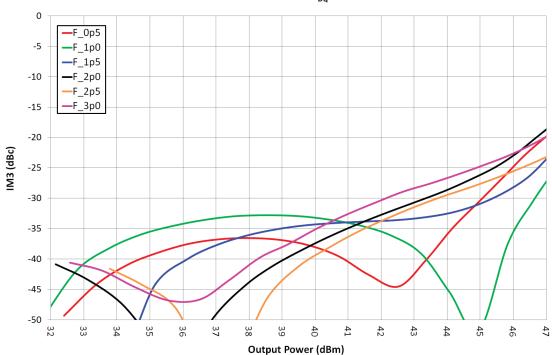
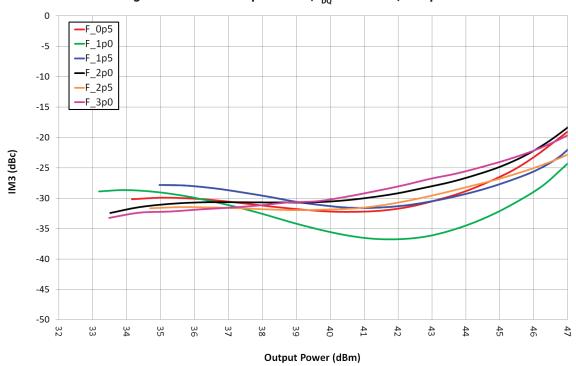



Figure 5 - IM3 vs. Output Power, I_{pq} =300 mA, Temp 25°C

CG2H30070F Typical Performance

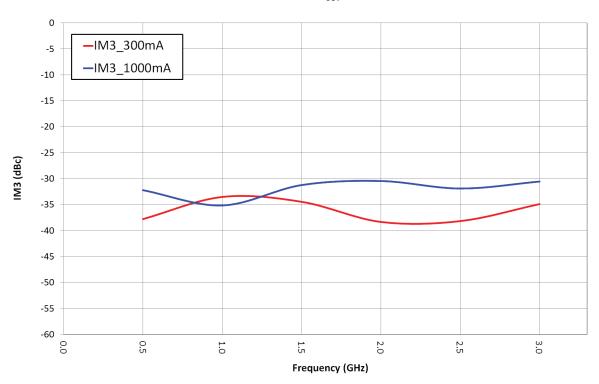
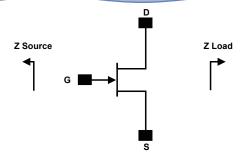
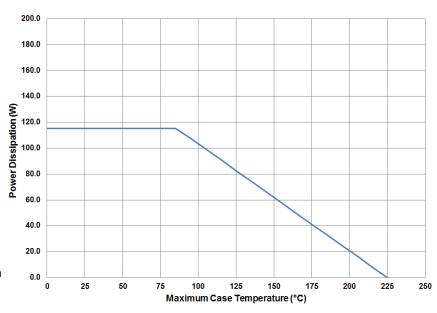



Figure 7 - IM3 vs. Frequency, P_{OUT} =40 dBm, Temp 25°C

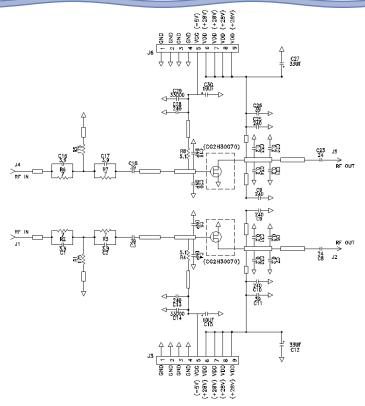
Simulated Source and Load Impedances

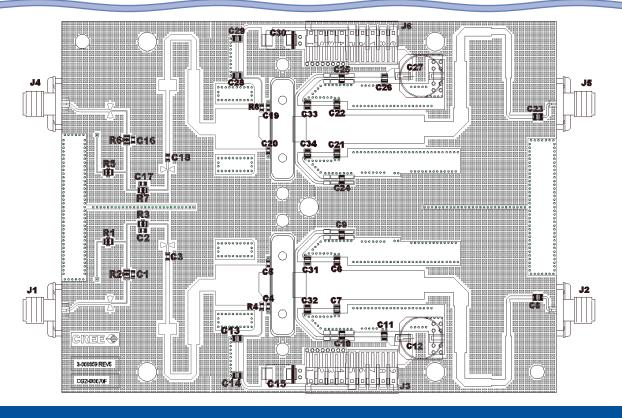

Frequency (MHz)	Z Source	Z Load
500	9 - j5.15	5.79 - j2.56
1000	7.45 - j3.82	4.76 - j1.35
1500	1.7 - j3.24	3.55 + j0.8
2000	2.33 - j0.06	4.19 + j0.19
2500	4.57 - j2.15	4.34 - j1.73
3000	1.07 - j1.04	2.65 - j1.57

Note 1. V_{DD} = 28 V, I_{DQ} = 1.0 A in the 440224 package.

Note 2. Optimized for power gain, \mathbf{P}_{SAT} and Drain Efficiency.

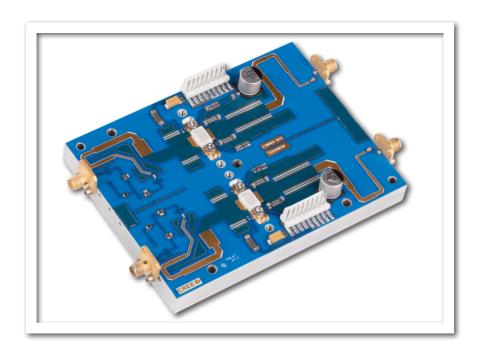
Note 3. When using this device at low frequency, series resistors should be used to maintain amplifier stability.


CG2H30070 Power Dissipation De-rating Curve, CW and Pulse (100 µsec, 10%)

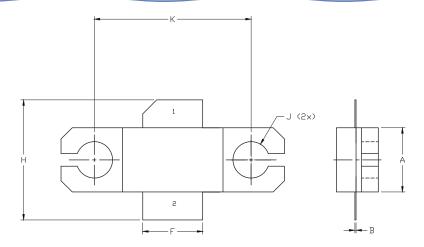

Note 1. Area exceeds Maximu

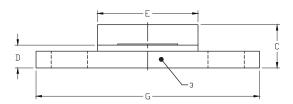
CG2H30070-AMP Demonstration Amplifier Circuit Schematic

CG2H30070-AMP Demonstration Amplifier Circuit Outline



CG2H30070-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
C11, C26	CAP, 39 pF, ±5%, 250V, 0805, ATC600F	2
C8, C23	CAP, 24 pF, ±5%, 250V, 0805, ATC600F	2
C3, C18	CAP, 39 pF, ±5%, 0603, ATC	2
C14, C29	CAP, 33000PF, 0805, 100V, X7R	2
C15, C30	CAP, 10UF, 16V TANTALUM	2
C13, C9, C10, C28, C24, C25	CAP, 240pF, ±5%, 250V, 0805, ATC600F	6
C6, C7, C31, C32, C21, C22, C33, C34	CAP, 0.2pF, ±0.05%pF, 250V, 0805, ATC600F	8
C4, C5, C19, C20	DO NOT PLACE	0
C1, C2, C16, C17	CAP, 3.9pF, ±0.1pF, 0603, ATC	4
R2, R3, R6, R7	RES, 7 OHM, 0805, HIGH POWER SMT, IMS	4
R1, R5	RES, 175 OHM, 0805, HIGH POWER SMT, IMS	2
R4, R8	RES, 5 OHM, 0603, SMT	2
C12, C27	CAP, 33 UF, 20%, 100V, ELEC	2
J1, J2, J4, J5	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20 MIL	4
J3, J6	HEADER RT>PLZ .1CEN LK 9POS	2
	PCB, R06035HTC, 3.6"x4.8"x0.10", CG2H30070F	1
	BASEPLATE, AI, 4.8x3.6x0.5	


CG2H30070-AMP Demonstration Amplifier Circuit

Product Dimensions CG2H30070F (Package Type - 440224)

NOTES:

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.225	0.235	5.72	5.97	
В	0.004	0.006	0.10	0.15	
С	0.145	0.165	3.68	4.19	
D	0.077	0.087	1.96	2.21	
Ε	0.355	0.365	9.02	9.27	
F	0.210	0.220	5.33	5.59	
G	0.795	0.805	20.19	20.45	
Н	0.400	0.460	10.16	11.68	
J	ø.	130	3.3	30	
k	0.5	62	14.27		

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Ordering Information

Order Number	Description	Unit of Measure	lmage
CG2H30070F	GaN HEMT	Each	
CG2H30070F-TB	Test board without GaN HEMT	Each	
CG2H30070F-AMP	Test board with GaN HEMT installed	Each	

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RF

Sarah Miller Marketing & Export Cree, RF Components 1.919.407.5302

Ryan Baker Marketing Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639