

CG2H40120 120 W, 28 V, RF Power GaN HEMT

Cree's CG2H40120 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CG2H40120, operating from a 28 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CG2H40120 ideal for linear and compressed amplifier circuits. The transistor is available in a flange and pill package.

Package Types: 440223 and 440206 PN: CG2H40120F and CG2H40120P

FEATURES

- Up to 2.5 GHz Operation
- 20 dB Small Signal Gain at 1.0 GHz
- 15 dB Small Signal Gain at 2.0 GHz
- 120 W Typical P_{SAT}
- 70 % Efficiency at P_{SAT}
- 28 V Operation

APPLICATIONS

- 2-Way Private Radio
- Broadband Amplifiers
- Test Instrumentation

CREE 🔶

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	84	Volts	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	Volts	25°C
Storage Temperature	T _{stg}	-65, +150	°C	
Operating Junction Temperature	TJ	225	°C	
Maximum Forward Gate Current	I _{GMAX}	30	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	12	А	25°C
Soldering Temperature ²	Τ _s	245	°C	
Screw Torque	τ	80	in-oz	
Thermal Resistance, Junction to Case ³	$R_{_{ ext{ heta}JC}}$	1.39	°C/W	85°C
Thermal Resistance, Junction to Case ⁴	$R_{_{ ext{ heta}JC}}$	1.32	°C/W	85°C
Case Operating Temperature⁵	T _c	-40, +65	°C	

Note:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at <u>www.cree.com/RF/Document-Library</u>

³ Measured for the CG2H40120F at $P_{DISS} = 115 \text{ W}.$ ⁴ Measured for the CG2H40120P at $P_{DISS} = 115 \text{ W}.$

⁵ See also, the Power Dissipation De-rating Curve on Page 4.

Electrical Characteristics ($T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions		
DC Characteristics ¹	DC Characteristics ¹							
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V _{DC}	$V_{_{DS}}$ = 10 V, I _D = 28.8 mA		
Gate Quiescent Voltage	$V_{_{GS(Q)}}$	-	-2.7	-	V _{DC}	$V_{\rm DS}$ = 28 V, I _D = 1.0 A		
Saturated Drain Current ²	I _{DS}	23.2	28.0	-	А	$V_{_{\rm DS}}$ = 6.0 V, $V_{_{\rm GS}}$ = 2.0 V		
Drain-Source Breakdown Voltage	V _{BR}	120	-	-	V _{DC}	$V_{gs} = -8 \text{ V, I}_{d} = 28.8 \text{ mA}$		
RF Characteristics ³ ($T_c = 25^{\circ}C$, $F_0 = 1.3$ GH:	z unless otherw	ise noted)						
Small Signal Gain	G _{ss}	-	20	-	dB	$V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1.0 \text{ A}$		
Power Output ^₄	P _{SAT}	-	130	-	W	$V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1.0 \text{ A}$		
Drain Efficiency⁵	η	-	70	-	%	V_{DD} = 28 V, I_{DQ} = 1.0 A, P_{OUT} = P_{SAT}		
Output Mismatch Stress	VSWR	-	-	10 : 1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A},$ $P_{OUT} = 100 \text{ W CW}$		
Dynamic Characteristics								
Input Capacitance	C _{GS}	-	35.3	-	pF	$V_{_{DS}}$ = 28 V, $V_{_{gs}}$ = -8 V, f = 1 MHz		
Output Capacitance	C _{DS}	-	9.1	-	pF	$V_{_{DS}}$ = 28 V, $V_{_{gs}}$ = -8 V, f = 1 MHz		
Feedback Capacitance	C _{gd}	-	1.6	-	pF	$V_{_{DS}}$ = 28 V, $V_{_{gs}}$ = -8 V, f = 1 MHz		

Notes:

¹ Measured on wafer prior to packaging.

² Scaled from PCM data.

³ Measured in CG2H40120F/P-AMP

 4 P_{SAT} is defined as I_G = 2.8 mA.

⁵ Drain Efficiency = P_{out} / P_{pc}

Copyright © 2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Typical Performance

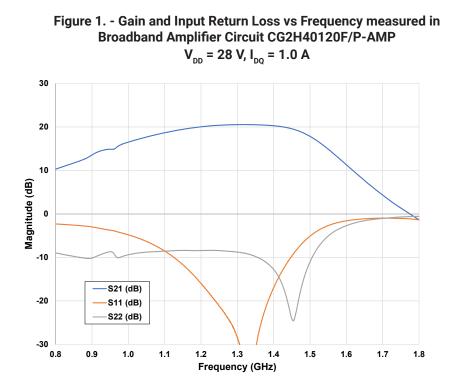
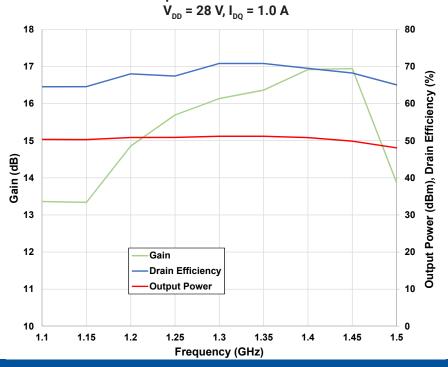
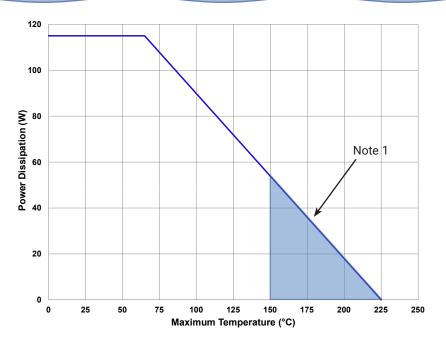
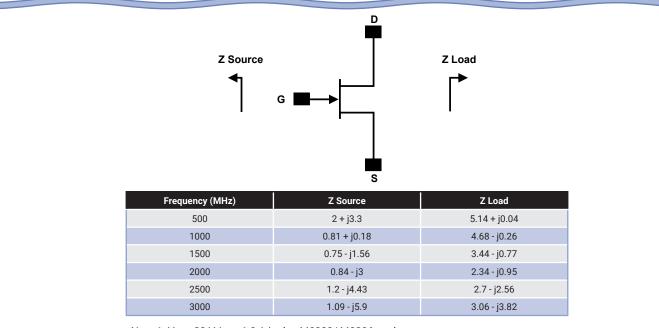



Figure 2. - Saturated Output Power, Gain and Drain Efficiency vs Frequency measured in Broadband Amplifier Circuit CG2H40120F/P-AMP



Copyright © 2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.


Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 _________www.cree.com/rf

CG2H40120 CW Power Dissipation De-rating Curve

Note 1. Area exceeds Maximum Case Operating Temperature (See Page 2).

Source and Load Impedances

Note 1. V_{DD} = 28 V, I_{DQ} = 1.0 A in the 440223/440206 package.

Note 2. Optimized for power gain, $\mathsf{P}_{_{\text{SAT}}}$ and PAE.

Note 3. When using this device at low frequency, series resistors should be used to maintain amplifier stability.

Copyright © 2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

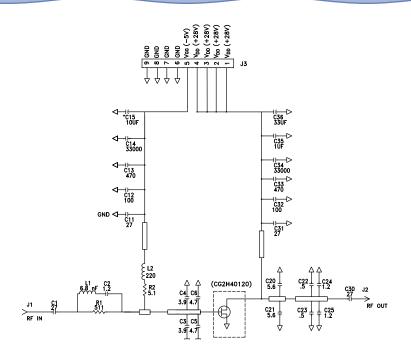
Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

CG2H40120-AMP Demonstration Amplifier Circuit Bill of Materials

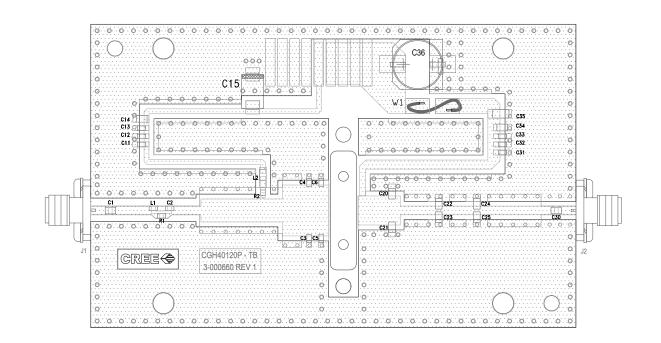
Designator	Description	Qty
R2	RES, 1/16W, 0603, 1%, 5.1 Ohms	1
R1	RES,1/16W,0603,1%,511 OHMS	1
C13,C33	CAP, 470PF, 5%, 100V, 0603	2
C36	CAP, 33 UF, 20%, G CASE	1
C35	CAP, 1.0UF, 100V, 10%, X7R	1
C15	CAP 10UF 16V TANTALUM	1
C12,C32	CAP, 100.0pF, 5%, 0603, ATC	2
C2	CAP, 1.2pF, 0.1pF, 0603, ATC	1
C11,C31	CAP, 27pF,5%, 0603, ATC	2
C3,C4	CAP, 3.9 pF,0.1pF, 0603, AT	2
C5,C6	CAP, 4.7 pF,0.1pF, 0603, AT	2
C14,C34	CAP,33000PF, 0805,100V, X7R	2
C22,C23	CAP, 0.5 PF 0.05 pF, 0805,	2
C24,C25	CAP, 1.2 PF 0.1 pF, 0805	2
C1,C30	CAP, 27 PF 5%,, 250V, 0805	2
C20,C21	CAP, 5.6 PF 0.1 pF, 0805, A	2
1	PCB, RO4003, 0.032 THK, CGH40120F	1
	BASEPLATE, CGH35120	1
	PRESSPLATE, CGH35120	1
J1,J2	CONN, SMA, PANEL MOUNT JACK	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
L2	IND, FERRITE, 220 OHM, 0805	1
L1	INDUCTOR,CHIP,6.8nH,0603 SMT	1
	2-56 SOC HD SCREW ¼ SS	4
	#2 SPLIT LOCKWASHER SS	4
W1	WIRE, BLACK, 22 AWG ~ 2.0"	1
Q1	CG2H40120F	1

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	HBM	1A > 250 V	JEDEC JESD22 A114-D
Charge Device Model	CDM	1 < 200 V	JEDEC JESD22 C101-C


Copyright © 2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf


CG2H40120 Rev 0.0

CG2H40120-AMP Demonstration Amplifier Circuit Schematic

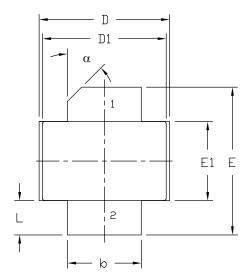
CG2H40120-AMP Demonstration Amplifier Circuit Outline

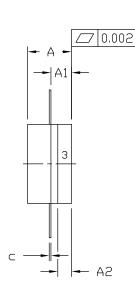
Copyright © 2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/ff

Typical Package S-Parameters for CG2H40120

(Small Signal, V_{DS} = 28 V, I_{DQ} = 1.0 A, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.961	-177.60	4.19	80.16	0.006	13.42	0.807	-179.57
600 MHz	0.961	-178.85	3.49	77.38	0.006	15.30	0.808	-179.85
700 MHz	0.961	-179.89	2.99	74.72	0.006	17.30	0.810	179.89
800 MHz	0.961	179.22	2.61	72.16	0.007	19.36	0.811	179.66
900 MHz	0.961	178.41	2.32	69.66	0.007	21.47	0.813	179.42
1.0 GHz	0.960	177.67	2.09	67.22	0.007	23.59	0.815	179.18
1.1 GHz	0.960	176.96	1.89	64.83	0.007	25.71	0.817	178.94
1.2 GHz	0.960	176.28	1.73	62.49	0.007	27.81	0.819	178.68
1.3 GHz	0.960	175.63	1.60	60.18	0.007	29.86	0.822	178.41
1.4 GHz	0.960	174.99	1.48	57.92	0.008	31.86	0.824	178.13
1.5 GHz	0.960	174.36	1.38	55.69	0.008	33.80	0.826	177.83
1.6 GHz	0.960	173.73	1.30	53.50	0.008	35.65	0.828	177.52
1.7 GHz	0.960	173.11	1.22	51.35	0.008	37.40	0.830	177.19
1.8 GHz	0.959	172.49	1.15	49.23	0.009	39.06	0.832	176.84
1.9 GHz	0.959	171.86	1.10	47.15	0.009	40.61	0.835	176.47
2.0 GHz	0.959	171.23	1.04	45.09	0.010	42.04	0.837	176.09
2.1 GHz	0.958	170.59	0.99	43.07	0.010	43.36	0.839	175.69
2.2 GHz	0.958	169.95	0.95	41.08	0.011	44.56	0.840	175.28
2.3 GHz	0.957	169.29	0.91	39.12	0.011	45.64	0.842	174.85
2.4 GHz	0.957	168.63	0.88	37.18	0.012	46.60	0.844	174.40
2.5 GHz	0.956	167.95	0.85	35.28	0.012	47.45	0.845	173.93
2.6 GHz	0.956	167.26	0.82	33.39	0.013	48.18	0.847	173.45
2.7 GHz	0.955	166.56	0.79	31.53	0.014	48.80	0.848	172.94
2.8 GHz	0.954	165.84	0.77	29.68	0.014	49.32	0.849	172.43
2.9 GHz	0.953	165.10	0.75	27.86	0.015	49.74	0.850	171.89
3.0 GHz	0.952	164.34	0.73	26.04	0.016	50.05	0.851	171.33
3.2 GHz	0.950	162.75	0.70	22.46	0.018	50.40	0.852	170.17
3.4 GHz	0.948	161.07	0.68	18.91	0.020	50.38	0.852	168.93
3.6 GHz	0.944	159.27	0.66	15.37	0.023	50.02	0.852	167.61
3.8 GHz	0.941	157.33	0.65	11.82	0.025	49.32	0.850	166.19
4.0 GHz	0.936	155.23	0.64	8.23	0.029	48.30	0.848	164.68
4.2 GHz	0.931	152.94	0.64	4.57	0.033	46.94	0.844	163.06
4.4 GHz	0.925	150.43	0.64	0.80	0.037	45.24	0.840	161.32
4.6 GHz	0.917	147.66	0.65	-3.12	0.042	43.18	0.834	159.44
4.8 GHz	0.908	144.59	0.66	-7.23	0.048	40.72	0.826	157.41
5.0 GHz	0.896	141.14	0.68	-11.60	0.055	37.83	0.817	155.20
5.2 GHz	0.883	137.25	0.71	-16.29	0.064	34.45	0.805	152.81
5.4 GHz	0.866	132.84	0.74	-21.37	0.074	30.53	0.791	150.19
5.6 GHz	0.845	127.78	0.78	-26.94	0.086	25.97	0.774	147.33
5.8 GHz	0.820	121.95	0.83	-33.09	0.101	20.69	0.755	144.21
6.0 GHz	0.789	115.17	0.88	-39.95	0.118	14.58	0.731	140.79


To download the s-parameters in s2p format, go to the CG2H40120F Product Page and click on the documentation tab.

Copyright © 2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

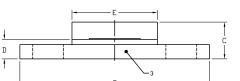
Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

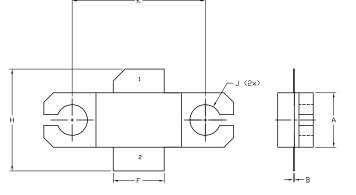
2. DRAIN 3. SOURCE

PIN 1. GATE

	INCHES		MILLIM	NOTES	
DIM	MIN	MAX	MIN	MAX	
А	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2x
с	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
E	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2x
α	45' REF		45° REF		


4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008^{\prime} IN ANY DIRECTION.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.


2. CONTROLLING DIMENSION: INCH.

NDTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M - 1994.

Product Dimensions CG2H40120P (Package Type - 440206)

Product Dimensions CG2H40120F (Package Type - 440223)

PIN 1. GATE PIN 2. DRAIN PIN 3. SDURCE

	INC	HES	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.225	0.235	5.72	5.97
в	0.004	0.006	0.10	0.15
С	0.145	0.165	3.68	4.19
D	0.077	0.087	1.96	2.21
Е	0.355	0.365	9.02	9.27
F	0.210	0.220	5.33	5.59
G	0.795	0.805	20.19	20.45
н	0.400	0.460	10.16	11.68
J	ø .130		3.30	
k	0.562		14.27	

2. CONTROLLING DIMENSION INCH. 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION 5. ALL PLATED SURFACES ARE NI/AU

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

NOTES

CREE 🔶

Product Ordering Information

Order Number CG2H40120F	Description GaN HEMT	Unit of Measure Each	Image
CG2H40120P	GaN HEMT	Each	CRIEIE COP CC2HAO120P CC2CO7668
CG2H40120F-AMP	Test board with GaN HEMT installed	Each	

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

CG2H40120 Rev 0.0

CREE ᆃ

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RE

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf