

CGH55030F2 / CGH55030P2

25 W, C-band, Unmatched, GaN HEMT

Cree's CGH55030F2/CGH55030P2 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH55030F2/CGH55030P2 ideal for C-band pulsed or CW saturated amplifiers. The transistor is available in both screw-down, flange and solder-down, pill packages. Based on appropriate external match adjustment, the CGH55030F2/CGH55030P2 is suitable for applications up to 6 GHz.

Package Type: 440196 & 440166 PN: CGH55030P2 & CGH55030F2

FEATURES

- 4.5 to 6.0 GHz Operation
- 12 dB Small Signal Gain at 5.65 GHz
- 30 W typical P_{SAT}
- 60 % Efficiency at P_{SAT}
- 28 V Operation

APPLICATIONS

- 2-Way Private Radio
- Broadband Amplifiers
- Cellular Infrastructure
- Test Instrumentation
- Class A, AB Amplifiers for Drivers and Gain Blocks

Large Signal Models Available for SiC & GaN

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

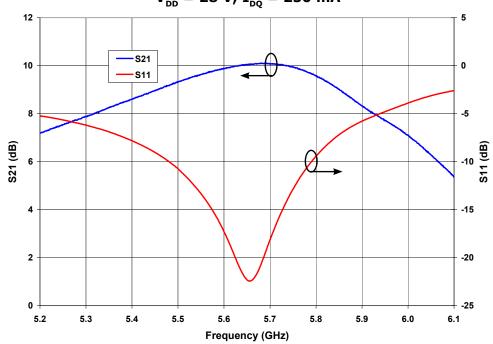
Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	$V_{\scriptscriptstyle DSS}$	84	Volts	25°C
Gate-to-Source Voltage	V_{GS}	-10, +2	Volts	25°C
Storage Temperature	T_{STG}	-65, +150	°C	
Operating Junction Temperature	T _j	225	°C	
Maximum Forward Gate Current	I_{GMAX}	7.0	mA	25°C
Maximum Drain Current ¹	I _{MAX}	3	Α	25°C
Soldering Temperature ²	T_s	245	°C	
Screw Torque	τ	60	in-oz	
Thermal Resistance, Junction to Case ³	$R_{_{ heta JC}}$	4.8	°C/W	85°C
Case Operating Temperature ^{3,4}	T _c	-40, +150	°C	30 seconds

Note:

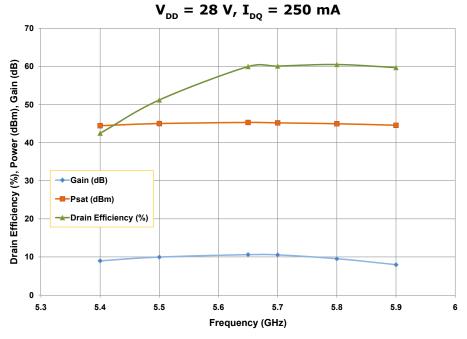
- ¹ Current limit for long term, reliable operation.
- $^2 \ \text{Refer to the Application Note on soldering at} \ \underline{\text{www.cree.com/products/wireless_appnotes.asp}}$
- 3 Measured for the CGH55030 at $P_{\text{DISS}} = 28$ W.
- ⁴ See also, the Power Dissipation De-rating Curve on Page 5.

Electrical Characteristics ($T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions		
DC Characteristics¹								
Gate Threshold Voltage	$V_{\rm GS(th)}$	-3.8	-3.0	-2.3	V_{DC}	$V_{DS} = 10 \text{ V, I}_{D} = 7.2 \text{ mA}$		
Gate Quiescent Voltage	$V_{\rm GS(Q)}$	-	-3.0	-	$V_{_{DC}}$	$V_{DS} = 28 \text{ V, } I_{D} = 250 \text{ mA}$		
Saturated Drain Current	$\mathbf{I}_{ extsf{DS}}$	5.8	7.0	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2 \text{ V}$		
Drain-Source Breakdown Voltage	$V_{_{\mathrm{BR}}}$	120	-	-	$V_{_{DC}}$	$V_{GS} = -8 \text{ V, } I_{D} = 7.2 \text{ mA}$		
RF Characteristics ² (T _c = 25 °C, F ₀	RF Characteristics ² (T _c = 25 °C, F _o = 5.65 GHz unless otherwise noted)							
Small Signal Gain	G_{ss}	9.0	11.0	-	dB	V_{DD} = 28 V, I_{DQ} = 250 mA		
Power Output ³	P _{SAT}	20	30	-	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}$		
Drain Efficiency⁴	η	50	60	-	%	V_{DD} = 28 V, I_{DQ} = 250 mA, P_{SAT}		
Output Mismatch Stress	VSWR	-	-	10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{SAT}$		
Dynamic Characteristics								
Input Capacitance	C _{GS}	-	9.0	-	pF	$V_{DS} = 28 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$		
Output Capacitance	C _{DS}	-	2.6	-	pF	$V_{DS} = 28 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$		
Feedback Capacitance	C_GD	-	0.4	-	pF	$V_{DS} = 28 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$		

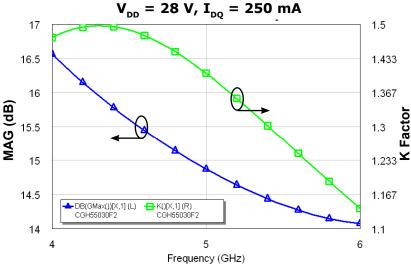

Notes:

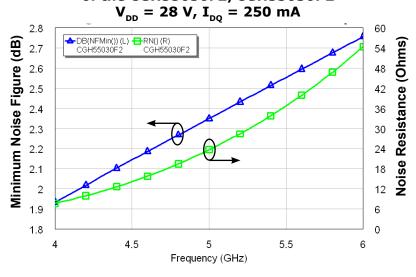
- ¹ Measured on wafer prior to packaging.
- ² Measured in CGH55030-TB.
- 3 P_{SAT} is defined as I_G = 0.72 mA. 4 Drain Efficiency = P_{out} / P_{DC}



Typical Performance

Small Signal S-Parameters vs Frequency of CGH55030F2 and CGH55030P2 in the CGH55030-TB $V_{\rm DD} = 28~\rm V,~I_{\rm DO} = 250~\rm mA$

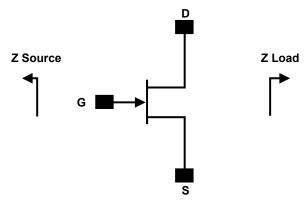

Drain Efficiency, Power and Gain vs Frequency of the CGH55030F2 and CGH55030P2 in the CGH55030-TB


Typical Performance

Simulated Maximum Available Gain and K Factor of the CGH55030F2/CGH55030P2

Typical Noise Performance

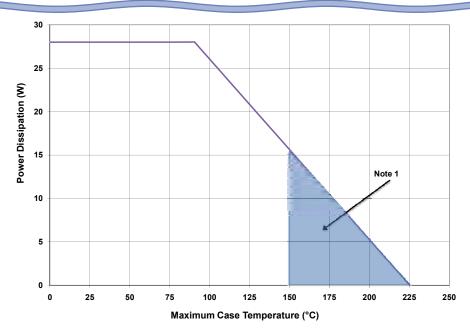
Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH55030F2/CGH55030P2



Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C

Source and Load Impedances



Frequency (MHz)	Z Source	Z Load
5500	8.0 - j12.4	14.1 - j12.6
5650	8.7 - j13.1	14.7 - j11.7
5800	8.4 - j14.0	15.4 - j11.0

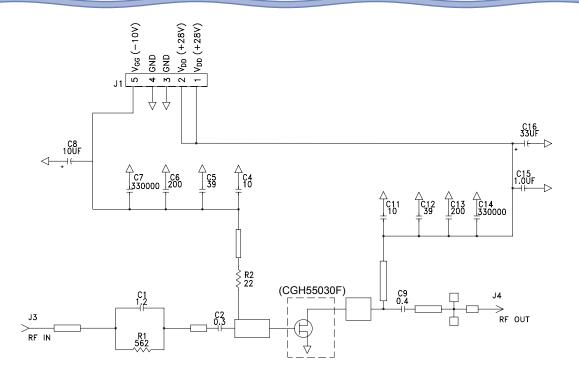
Note 1. $V_{\rm DD}$ = 28V, $I_{\rm DQ}$ = 250 mA in the 440166 package.

Note 2. Impedances are extracted from the CGH55030-TB demonstration amplifier and are not source and load pull data derived from the transistor.

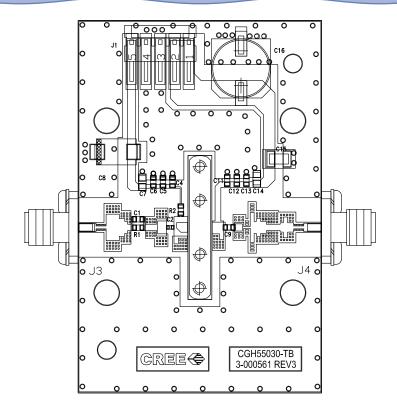
CGH55030F2 and CGH55030P2 Power Dissipation De-rating Curve

Note 1. Area exceeds Maximum Case Operating Temperature (See Page 2).

CGH55030-TB Demonstration Amplifier Circuit Bill of Materials

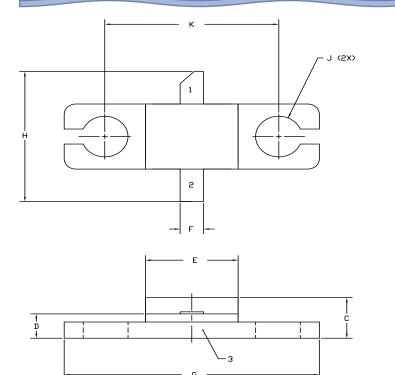

Designator	Description	Qty
R1	RES, 1/16W, 0603, 1%, 562 OHMS	1
R2	RES, 1/16W, 0603, 1%, 22.6 OHMS	1
C2	CAP, 0.3pF, +/-0.05pF, 0402, ATC600L	1
C16	CAP, 33 UF, 20%, G CASE	1
C15	CAP, 1.0UF, 100V, 10%, X7R, 1210	1
C8	CAP 10UF 16V TANTALUM	1
C9	CAP, 0.4pF, +/-0.05pF, 0603, ATC600S	1
C1	CAP, 1.2pF, +/-0.1pF, 0603, ATC600S	1
C6,C13	CAP,200 PF,0603 PKG, 100 V	2
C4,C11	CAP, 10.0pF,+/-5%, 0603, ATC600S	2
C5,C12	CAP, 39pF, +/-5%, 0603, ATC600S	2
C7,C14	CAP, 330000PF, 0805, 100V, TEMP STABILIZ	2
J3,J4	CONN, SMA, PANEL MOUNT JACK, FLANGE	2
J1	HEADER RT>PLZ .1CEN LK 5POS	1
-	PCB, RO4350B, Er = 3.48, h = 20 mil	1
-	CGH55030	1

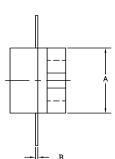
CGH55030-TB Demonstration Amplifier Circuit



CGH55030-TB Demonstration Amplifier Circuit Schematic

CGH55030-TB Demonstration Amplifier Circuit Outline


Typical Package S-Parameters for CGH55030 (Small Signal, $V_{\rm DS}$ = 28 V, $I_{\rm DQ}$ = 250 mA, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.917	-157.22	12.62	91.45	0.018	7.56	0.458	-158.97
600 MHz	0.916	-161.92	10.57	87.33	0.018	4.70	0.465	-160.93
700 MHz	0.916	-165.46	9.07	83.78	0.018	2.41	0.472	-162.19
800 MHz	0.916	-168.28	7.94	80.58	0.018	0.51	0.478	-163.04
900 MHz	0.916	-170.61	7.05	77.64	0.017	-1.12	0.485	-163.64
1.0 GHz	0.916	-172.60	6.33	74.88	0.017	-2.55	0.493	-164.09
1.1 GHz	0.917	-174.33	5.74	72.25	0.017	-3.82	0.500	-164.45
1.2 GHz	0.917	-175.88	5.24	69.73	0.017	-4.94	0.508	-164.77
1.3 GHz	0.918	-177.28	4.82	67.30	0.017	-5.95	0.516	-165.06
1.4 GHz	0.918	-178.57	4.46	64.94	0.017	-6.84	0.525	-165.36
1.5 GHz	0.919	-179.78	4.14	62.65	0.016	-7.63	0.533	-165.67
1.6 GHz	0.919	179.09	3.87	60.41	0.016	-8.31	0.542	-165.99
1.7 GHz	0.920	178.01	3.62	58.22	0.016	-8.90	0.550	-166.35
1.8 GHz	0.921	176.98	3.40	56.07	0.016	-9.39	0.559	-166.73
1.9 GHz	0.921	175.99	3.21	53.97	0.015	-9.77	0.568	-167.14
2.0 GHz	0.922	175.03	3.03	51.90	0.015	-10.06	0.577	-167.59
2.1 GHz	0.923	174.09	2.87	49.87	0.015	-10.24	0.585	-168.07
2.2 GHz	0.924	173.17	2.73	47.87	0.014	-10.31	0.594	-168.57
2.3 GHz	0.924	172.27	2.60	45.91	0.014	-10.27	0.602	-169.11
2.4 GHz	0.925	171.39	2.47	43.97	0.014	-10.12	0.610	-169.67
2.5 GHz	0.926	170.51	2.36	42.07	0.014	-9.85	0.619	-170.26
2.6 GHz	0.926	169.65	2.26	40.19	0.013	-9.46	0.626	-170.88
2.7 GHz	0.927	168.79	2.16	38.34	0.013	-8.95	0.634	-171.52
2.8 GHz	0.928	167.93	2.08	36.52	0.013	-8.31	0.642	-172.17
2.9 GHz	0.928	167.08	1.99	34.72	0.013	-7.54	0.649	-172.85
3.0 GHz	0.929	166.24	1.92	32.94	0.013	-6.65	0.656	-173.55
3.2 GHz	0.930	164.54	1.78	29.45	0.012	-4.49	0.670	-175.00
3.4 GHz	0.931	162.85	1.66	26.05	0.012	-1.85	0.683	-176.50
3.6 GHz	0.932	161.14	1.55	22.72	0.012	1.19	0.695	-178.06
3.8 GHz	0.933	159.42	1.46	19.46	0.012	4.55	0.706	-179.66
4.0 GHz	0.933	157.68	1.38	16.27	0.012	8.08	0.716	178.70
4.2 GHz	0.934	155.91	1.31	13.12	0.012	11.64	0.726	177.02
4.4 GHz	0.934	154.11	1.24	10.03	0.013	15.08	0.735	175.30
4.6 GHz	0.935	152.28	1.18	6.97	0.013	18.26	0.743	173.56
4.8 GHz	0.935	150.41	1.13	3.95	0.014	21.09	0.750	171.78
5.0 GHz	0.935	148.49	1.08	0.96	0.015	23.50	0.756	169.97
5.2 GHz	0.935	146.53	1.04	-2.00	0.016	25.48	0.762	168.12
5.4 GHz	0.935	144.52	1.00	-4.96	0.017	27.02	0.768	166.24
5.6 GHz	0.935	142.45	0.97	-7.90	0.018	28.12	0.773	164.32
5.8 GHz	0.934	140.31	0.94	-10.84	0.020	28.83	0.777	162.36
6.0 GHz	0.934	138.12	0.91	-13.79	0.021	29.18	0.781	160.36

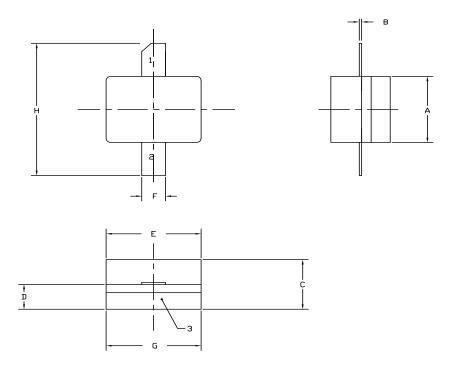
Download this s-parameter file in ".s2p" format at http://www.cree.com/products/wireless_s-parameters.asp

Product Dimensions CGH55030F (Package Type — 440166)

	INC	HES	MILLIM	IETERS
DIM	MIN MAX		MIN	MAX
Α	0.155	0.165	3.94	4.19
В	0.004	0.006	0.10	0.15
С	0.115	0.135	2.92	3.43
D	0.057	0.067	1.45	1.70
Е	0.195	0.205	4.95	5.21
F	0.045	0.055	1.14	1.40
G	0.545	0.555	13.84	14.09
Н	0.280	0.360	7.11	9.14
J	ø .100		2.5	54
К	0.3	75	9.5	53

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.


4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

2. CONTROLLING DIMENSION: INCH.

5. ALL PLATED SURFACES ARE NI/AU

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Dimensions CGH55030P (Package Type — 440196)

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.155	0.165	3.94	4.19
В	0.003	0.006	0.10	0.15
С	0.115	0.135	2.92	3.17
D	0.057	0.067	1.45	1.70
E	0.195	0.205	4.95	5.21
F	0.045	0.055	1.14	1.40
G	0.195	0.205	4.95	5.21
Н	0.280	0.360	7.11	9.14

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/wireless

Sarah Miller Marketing & Export Cree, RF Components 919,407,5302

Ryan Baker Marketing Cree, RF Components 919.407.7816

Tom Dekker Sales Director Cree, RF Components 919,407,5639