
80 W, 5.0 - 5.9 GHz, GaN MMIC, Power Amplifier

Description

Cree's CMPA5259080S is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier design approach enabling high power and power added efficiency to be achieved in a 7 mm x 7 mm surface mount (QFN package).

PN: CMPA5259080S Package Type: 7 x 7 QFN

Typical Performance Over 5.2 - 5.9 GHz ($T_c = 25^{\circ}$ C)

Parameter	5.2 GHz	5.5 GHz	5.9 GHz	Units
Small Signal Gain ^{1,2}	29.0	30.5	28.1	dB
Output Power ^{1,3}	112.9	112.5	99.9	W
Power Gain ^{1,3}	21.4	21.4	21.0	dB
Power Added Efficiency ^{1,3}	47	49	47	%

Notes:

Features

- >48% Typical Power Added Efficiency
- 29 dB Small Signal Gain
- 110 W Typical P_{SAT}
- Operation up to 40 V
- High Breakdown Voltage
- **High Temperature Operation**

Note: Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

Applications

Civil and Military Pulsed **Radar Amplifiers**

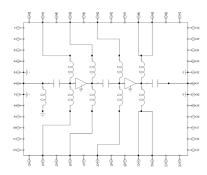


Figure 1.

 $^{^{1}}V_{DD}$ = 40 V, I_{DQ} = 350 mA

² Measured at Pin = -20 dBm

 $^{^3}$ Measured at Pin = 29 dBm and 500 μ s; Duty Cycle = 20%

Absolute Maximum Ratings (not simultaneous) at 25 °C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	$V_{\mathtt{DSS}}$	120	VDC	25°C
Gate-source Voltage	$V_{\sf GS}$	-10, +2	VDC	25°C
Storage Temperature	T _{STG}	-55, +150	°C	
Maximum Forward Gate Current	I _G	23.2	mA	25°C
Maximum Drain Current	I _{DMAX}	4.8	Α	
Soldering Temperature	T _s	260	°C	

Electrical Characteristics (Frequency = 5.2 GHz to 5.9 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	$V_{\rm GS(TH)}$	-3.6	-3.1	-2.4	٧	$V_{DS} = 10 \text{ V, I}_{D} = 23.2 \text{ mA}$
Gate Quiescent Voltage	$\boldsymbol{V}_{GS(Q)}$	-	-2.7	-	$V_{_{DC}}$	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	16.7	23.2	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{BD}}$	100	-	-	٧	$V_{GS} = -8 \text{ V}, I_D = 23.2 \text{ mA}$
RF Characteristics ^{2,3}						
Small Signal Gain	S21 ₁	-	27	-	dB	Pin = -20 dBm, Freq = 5.2 - 5.9 GHz
Output Power	P _{OUT1}	-	105	-	W	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, Freq = 5.2 \text{ GHz}$
Output Power	P _{OUT2}	-	102	-	W	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{dBm}, \text{Freq} = 5.5 \text{ GHz}$
Output Power	P _{OUT3}	-	112	-	W	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, Freq = 5.9 \text{ GHz}$
Power Added Efficiency	PAE ₁	-	50	-	%	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, Freq = 5.2 \text{ GHz}$
Power Added Efficiency	PAE ₂	-	48	-	%	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, Freq = 5.5 \text{ GHz}$
Power Added Efficiency	PAE ₃	-	48	-	%	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, Freq = 5.9 \text{ GHz}$
Power Gain	G _{P1}	-	21	-	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, Freq = 5.2 \text{ GHz}$
Power Gain	G _{P2}	-	21	-	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, Freq = 5.5 \text{ GHz}$
Power Gain	G _{P3}	-	22	-	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, Freq = 5.9 \text{ GHz}$
Input Return Loss	S11	_	-10	-	dB	Pin = -20 dBm, 5.2 - 5.9 GHz
Output Return Loss	S22	-	-4	-	dB	Pin = -20 dBm, 5.2 - 5.9 GHz
Output Mismatch Stress	VSWR	_	-	3:1	Ψ	No damage at all phase angles

Notes:

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	T _J	225	°C	
Thermal Resistance, Junction to Case (packaged) ¹	$R_{\theta JC}$	0.95	°C/W	Pulse Width = 500 μs, Duty Cycle =20%

Notes:

¹ Scaled from PCM data

² Measured in CMPA5259080S high volume test fixture at 5.2, 5.5 and 5.9 GHz and may not show the full capability of the device due to source inductance and thermal performance.

 $^{^3}$ Unless otherwise noted: Pulse Width = 25 μ s, Duty Cycle = 1%

 $^{^{\}rm 1}$ Simulated for the CMPA5259080S at P $_{\rm DISS}$ = 120 W

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 350 \text{ mA}$, Pulse Width = 500 μ s, Duty Cycle = 20%, Pin = 29 dBm, $T_{BASE} = +25 ^{\circ}\text{C}$

Figure 1. Output Power vs Frequency
as a Function of Temperature

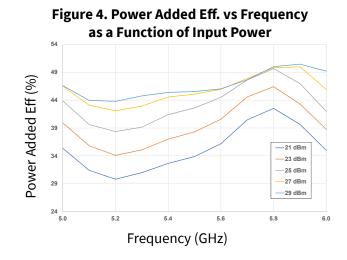
54.3

60.

Frequency (GHz)

Figure 2. Output Power vs Frequency
as a Function of Input Power

54.3


62.3

62.3

48.3

221 dBm
23 dBm
23 dBm
25 dBm
27 dBm
29 dBm
29 dBm
27 dBm
29 dBm
27 dBm
29 dBm
27 dBm
29 dBm
27 dBm
28 dBm
28 dBm
28 dBm
29 dBm
29 dBm
21 dBm
21 dBm
22 dBm
23 dBm
25 dBm
25 dBm
26 dBm
27 dBm
27 dBm
28 dBm
28 dBm
28 dBm
29 dBm
29 dBm

Figure 3. Power Added Eff. vs Frequency
as a Function of Temperature

6.7 6.2 5.7 5.7 4.2 4.7 4.2 4.7 4.2 4.7 4.2 -25°C -40°C -25°C -40°C Frequency (GHz)

Figure 5. Drain Current vs Frequency

as a Function of Temperature

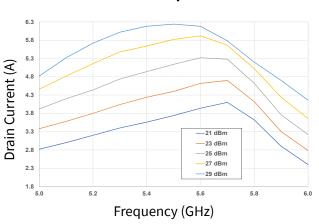


Figure 6. Drain Current vs Frequency as a Function of Input Power

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DQ} = 350 \text{ mA}$, Pulse Width = 500 μ s, Duty Cycle = 20%, Pin = 29 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 7. Output Power vs Frequency as a Function of VD 52.3

Output Power (dBm) 50.3 48.3 46.3 44.3 36 V Frequency (GHz)

Figure 8. Output Power vs Frequency as a Function of IDQ

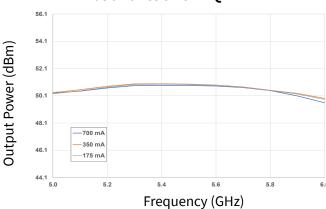


Figure 9. Power Added Eff. vs Frequency as a Function of VD

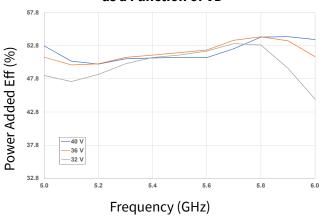


Figure 10. Power Added Eff. vs Frequency as a Function of IDQ

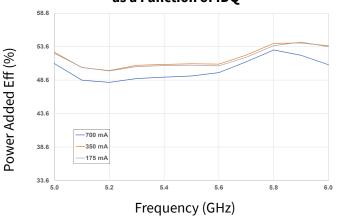


Figure 11. Drain Current vs Frequency as a Function of VD

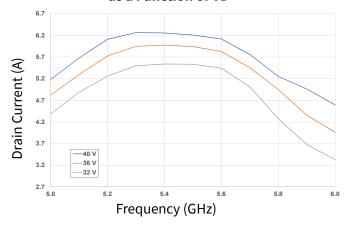
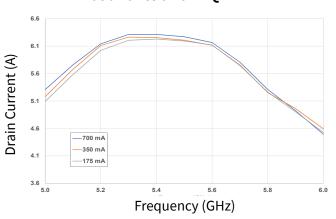



Figure 12. Drain Current vs Frequency as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 350 \text{ mA}$, Pulse Width = 500 μ s, Duty Cycle = 20%, Pin = 29 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 13. Output Power vs Input Power as a Function of Frequency

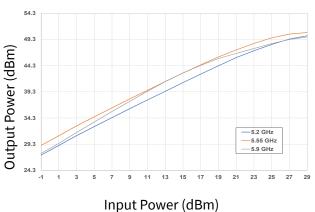
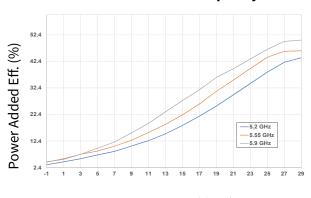



Figure 14. Power Added Eff. vs Input Power as a Function of Frequency

Input Power (dBm)

Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

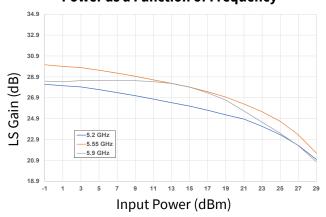


Figure 16. Drain Current vs Input Power as a Function of Frequency

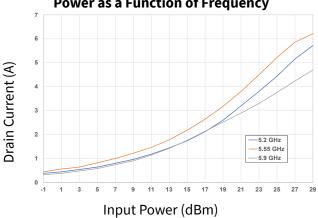
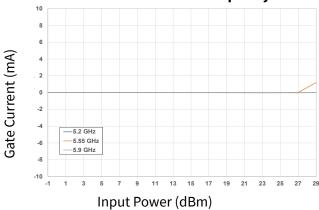



Figure 17. Gate Current vs Input Power as a Function of Frequency

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 350 \text{ mA}$, Pulse Width = 500 μ s, Duty Cycle = 20%, Pin = 29 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 18. Output Power vs Input
Power as a Function of Temperature

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

58.4

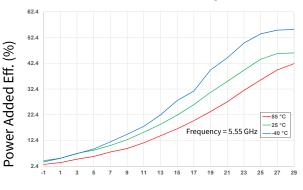
58.4

58.4

58.4

58.4

58.4


58.4

58.4

58.

Input Power (dBm)

Figure 19. Power Added Eff. vs Input Power as a Function of Temperature

Input Power (dBm)

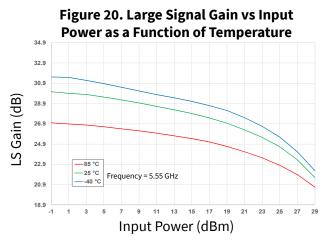


Figure 21. Drain Current vs Input Power as a Function of Temperature

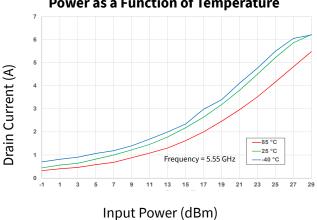
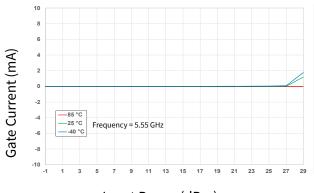



Figure 22. Gate Current vs Input Power as a Function of Temperature

Input Power (dBm)

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 350 \text{ mA}$, Pulse Width = 500 μ s, Duty Cycle = 20%, Pin = 29 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 23. Output Power vs Input Power as a Function of IDQ

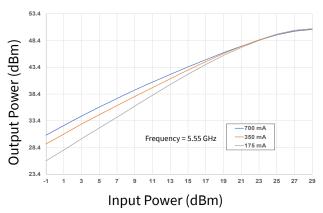


Figure 24. Power Added Eff. vs Input Power as a Function of IDQ

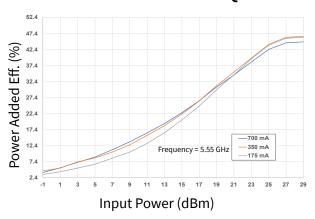


Figure 25. Large Signal Gain vs Input Power as a Function of IDQ

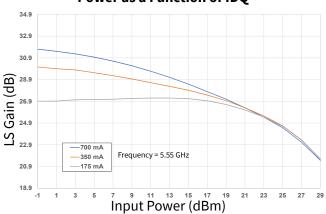


Figure 26. Drain Current vs Input Power as a Function of IDQ

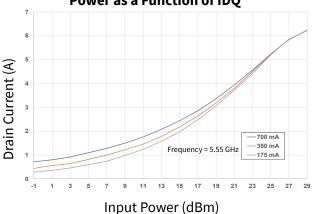
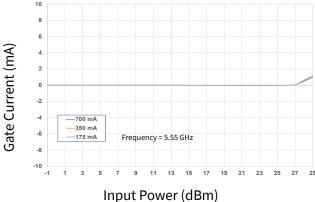



Figure 27. Gate Current vs Input Power as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 350 \text{ mA}$, Pulse Width = 500 μ s, Duty Cycle = 20%, Pin = 29 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 28. 2nd Harmonic vs Frequency as a Function of Temperature

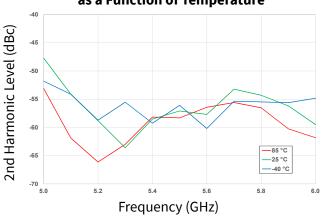


Figure 29. 3rd Harmonic vs Frequency as a Function of Temperature

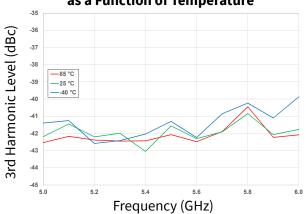


Figure 30. 2nd Harmonic vs Output Power as a Function of Frequency

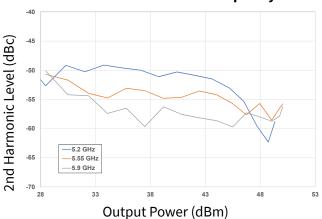


Figure 31. 3rd Harmonic vs Output Power as a Function of Frequency

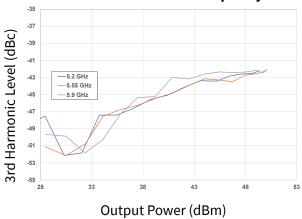


Figure 32. 2nd Harmonic vs Output Power as a Function of IDQ

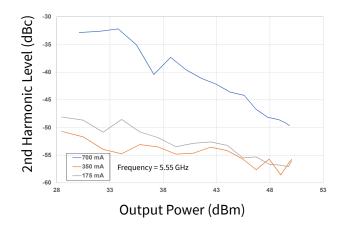


Figure 33. 3rd Harmonic vs Output Power as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 350 \text{ mA}$, Pin = -20 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 34. Gain vs Frequency as a Function of Temperature

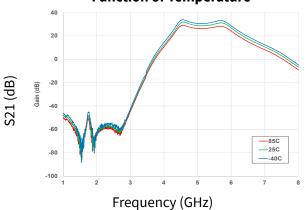


Figure 36. Input RL vs Frequency as a Function of Temperature

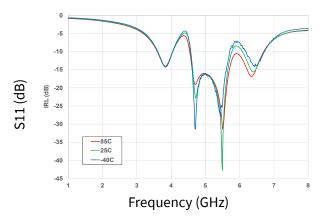


Figure 38. Output RL vs Frequency as a Function of Temperature

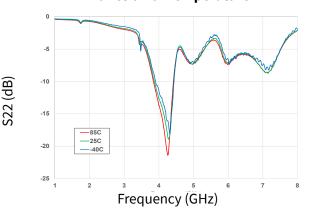


Figure 35. Gain vs Frequency as a Function of Temperature

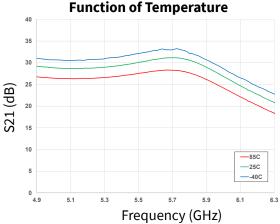


Figure 37. Input RL vs Frequency as a Function of Temperature

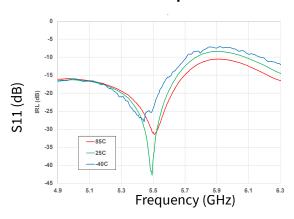
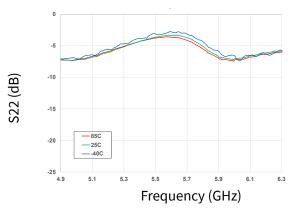



Figure 39. Output RL vs Frequency as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 350 \text{ mA}$, Pin = -20 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 42. Input RL vs Frequency as a Function Voltage

Figure 44. Output RL vs Frequency as a Function of Voltage

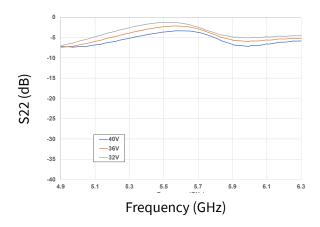


Figure 41. Gain vs Frequency as a Function of IDQ

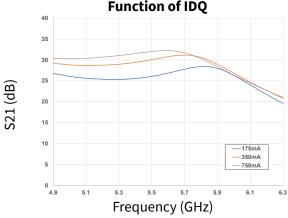
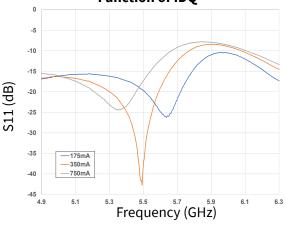
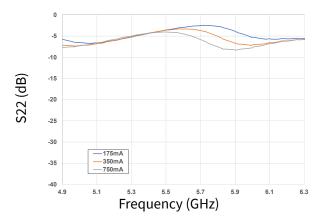
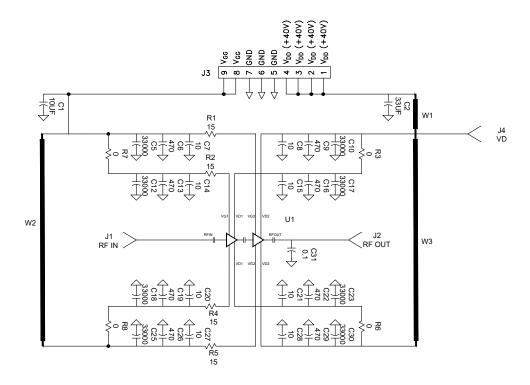
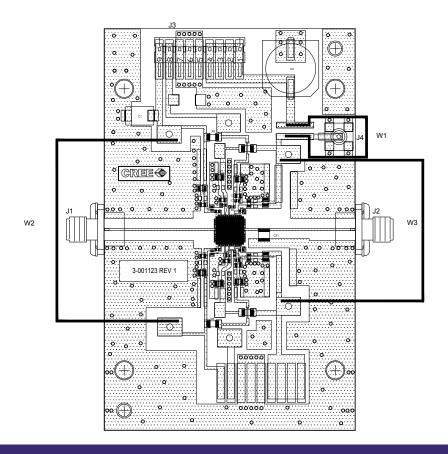


Figure 43. Input RL vs Frequency as a Function of IDQ

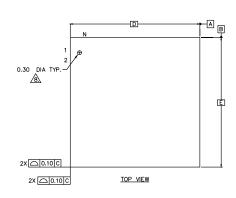

Figure 45. Output RL vs Frequency as a Function of IDQ

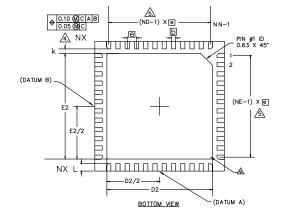
CMPA5259080S-AMP1 Demonstration Amplifier Schematic

CMPA5259080S-AMP1 Demonstration Amplifier Circuit Outline

CMPA5259080S-AMP1 Demonstration Amplifier Circuit Bill of Materials

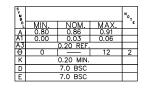
Designator	Description	Qty
C7, C8, C14, C15, C20, C21, C27, C28	CAP, 10pF, +/-5%,pF,200V, 0402	8
C6, C9, C13, C16, C29, C22, C26, C29	CAP, 470PF, 5%, 100V, 0603, X	8
C5, C10, C12, C17, C18, C23, C25, C30	CAP,33000PF, 0805,100V, X7R	8
C2	CAP, 33 UF, 20%, G CASE	1
C1	CAP, 10UF, 16V, TANTALUM	1
C31	CAP, 0.1PF, ATC 100 B	1
R1,R2,R4,R5	RES 15 OHM, +/-1%, 1/16W, 0402	4
R3,R6,R7,R8	RES 0.0 OHM 1/16W 0402 SMD	2
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
J3	HEADER RT>PLZ .1CEN LK 9POS	1
W2,W3	WIRE, BLACK, 22 AWG ~ 2.5"	2
W1	WIRE, BLACK, 22 AWG ~ 3.0"	1
	PCB, TEST FIXTURE, RF-35TC, 0.010 THK, 7x7 AIR CAVITY QFN, EVAL BOARD	1
	2-56 SOC HD SCREW 3/16 SS	4
	#2 SPLIT LOCKWASHER SS	4
U1	CMPA5259080S	1

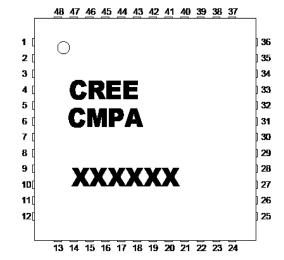

Electrostatic Discharge (ESD) Classifications


Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1B (≥ 500 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20


Product Dimensions CMPA5259080S (Package 7 x 7 QFN)



- 9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE

S THE C	0.50mr	m LEAD	PITCH	^м о _{те}		
T.	MIN.	NOM.	MAX.			
e		0.50 BSC.				
Ν		3				
ND		12		Δ		
ΝE		12		△		
L	0.35	0.41	0.46			
ь	0.19	0.25	0.33	A		
D2	5.61	5.72	5.83			
E2	5.61	5.72	5.83			

PIN	DESC.	PIN	DESC.	PIN	DESC.	PIN	DESC.
1	NC	15	NC	29	NC	43	VG2B
2	NC	16	VD1A	30	RFGND	44	NC
3	NC	17	NC	31	RFOUT	45	VD1B
4	NC	18	VG2A	32	RFGND	46	NC
5	RFGND	19	NC	33	NC	47	VG1B
6	RFIN	20	NC	34	NC	48	NC
7	RFGND	21	VD2A	35	NC		
8	NC	22	VD2A	36	NC		
9	NC	23	NC	37	NC		
10	NC	24	NC	38	NC		
11	NC	25	NC	39	VD2B		
12	NC	26	NC	40	VD2B		
13	NC	27	NC	41	NC		
14	VG1A	28	NC	42	NC		

Part Number System

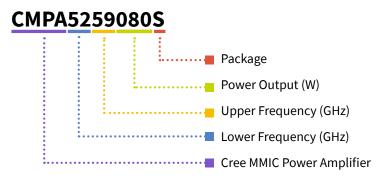


Table 1.

Parameter	Value	Units
Lower Frequency	5.2	GHz
Upper Frequency	5.9	GHz
Power Output	80	W
Package	Surface Mount	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
Е	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA5259080S	GaN HEMT	Each	
CMPA5259080S-AMP1	Test board with GaN MMIC installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

 $@\ 2020\ Cree,\ Inc.\ All\ rights\ reserved.\ Wolfspeed\\ @\ and\ the\ Wolfspeed\ logo\ are\ registered\ trademarks\ of\ Cree,\ Inc.\ Property of\ Cree,\ Property of\ Cree,\ Property\ Cree,\ P$