

CMPA601J025F

6 – 18 GHz, 25 W GaN HPA

Description

Wolfspeed's CMPA601J025F is a 25 W, MMIC HPA utilizing Wolfspeed's high performance, 0.15um GaN on SiC production process. The CMPA601J025F operates from 6 – 18 GHz and supports a variety of end applications such as electronic warfare, test instrumentation, radar and general amplification. The CMPA601J025F achieves 25 W of saturated output power with 20 dB of large signal gain and 20% power-added efficiency under CW operation.

Packaged in a 15x15 mm bolt-down, flange package, the CMPA601J025F provides superior broadband, RF performance and thermal management allowing customers to improve SWaP-C benchmarks in their next-generation systems.

Figure 1. CMPA601J025F

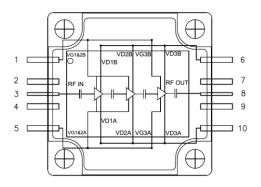


Figure 2. Functional Block Diagram

Features

Psat: 25 W
PAE: 20 %
LSG: 20 dB
S21: 30 dB
S11: -10 dB
S22: -8 dB

CW operation

Note: Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional information.

Applications

- Electronic Warfare
- Test Instrumentation
- Radar
- Broadband Amplifiers

Absolute Maximum Ratings

Parameter	Symbol	Units	Value	Conditions
Drain to Source Voltage	$V_{ t DSS}$	V	84	
Drain Voltage	V_{D}	V	22	
Gate Voltage	V_{G}	V	-10, +2	
Drain Current	I _D	А	5.9	
Gate Current	I_G	mA	11	
Input Power	P _{in}	dBm	24	CW operation
Dissipated Power	P _{diss}	W	130	
Storage Temperature	T_{stg}	°C	-55, +150	
Mounting Temperature	TJ	°C	320	30 seconds
Junction Temperature	T _J	°C	225	MTTF > 1E6
Output Mismatch Stress	VSWR	Ψ	3:1	

Recommended Operating Conditions

Parameter	Symbol	Units	Typical Value	Conditions
Drain Voltage	Vd	V	22	
Gate Voltage	Vg	V	-1.9	
Drain Current	Idq	mA	>1.2	
Input Power	Pin	dBm	24	CW operation only
Case Temperature	Tcase	°C	-40 to 60	

RF Specifications

Parameter	Units	Frequency	Min	Typical	Max	Conditions
Frequency	GHz		6		18	
		6		43.5		
Output Power	dBm	12		45.0		
		18		43.0		
Power-added		6		33		
Efficiency	%	12		27		
Efficiency		18		19		
		6		19.5		
LSG	dB	12		21.0		
		18		19		
		6		31		
Small-Signal Gain	dB	12		30		Pin = -25 dBm
		18		26		
Input Return Loss	dB	·		-10		Pin = -25 dBm
Output Return Loss	dB			-8		Pin = -25 dBm

Figure 3: Pout v. Frequency v. Temperature

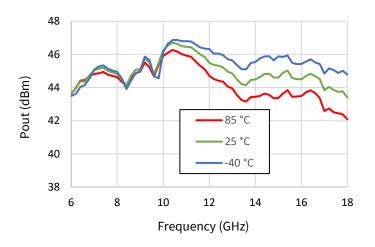


Figure 4: PAE v. Frequency v. Temperature

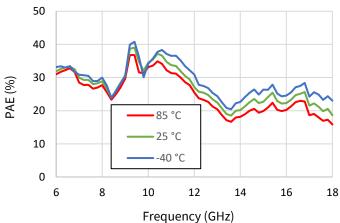


Figure 5: Id v. Frequency v. Temperature

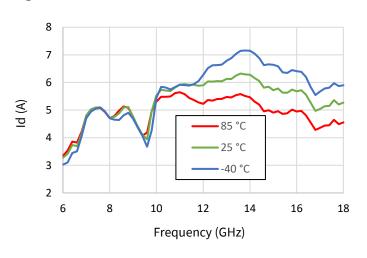


Figure 6: Ig v. Frequency v. Temperature

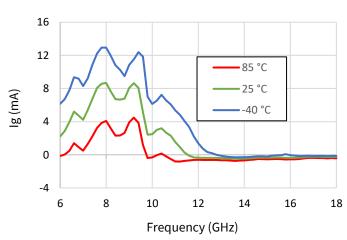


Figure 7: LSG v. Frequency v. Temperature

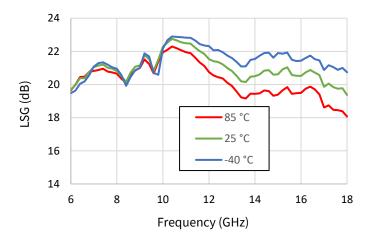


Figure 8: Pout v. Pin v. Frequency

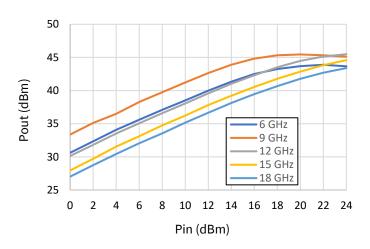


Figure 9: PAE v. Pin v. Frequency



Figure 10: Id v. Pin v. Frequency

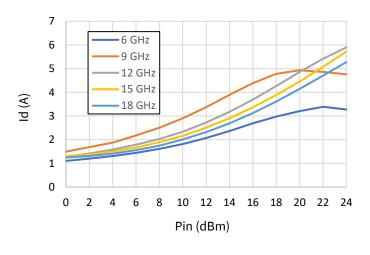


Figure 11: Ig v. Pin v. Frequency

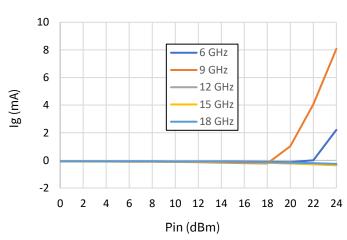


Figure 12: Gain v. Pin v. Frequency

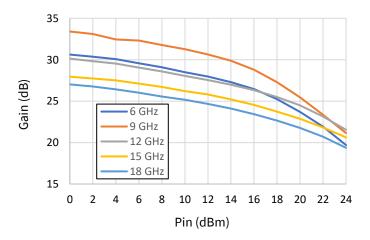


Figure 13: Pout v. Pin v. Temperature

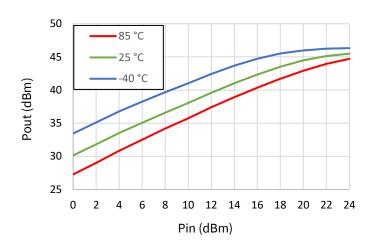


Figure 14: PAE v. Pin v. Temperature

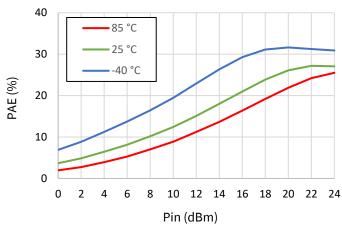


Figure 15: Id v. Pin v. Temperature

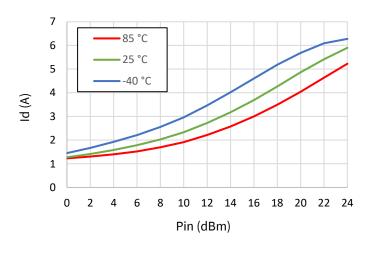


Figure 16: Ig v. Pin v. Temperature

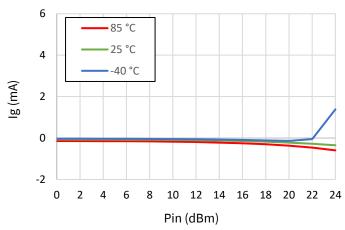
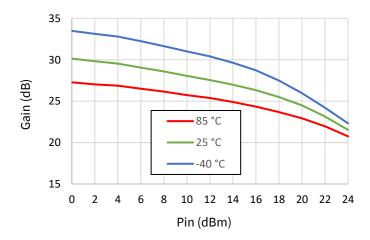



Figure 17: Gain v. Pin v. Temperature

Test conditions unless otherwise noted: Vd=22V, Idq= 1200mA, Pin = -25dBm, T_{base}=25 °C

Figure 18: S21 v. Frequency v. Temperature

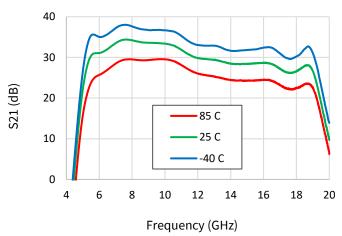
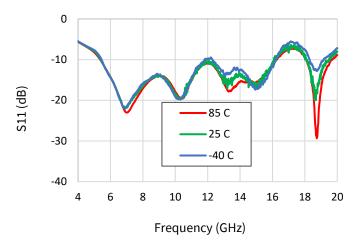
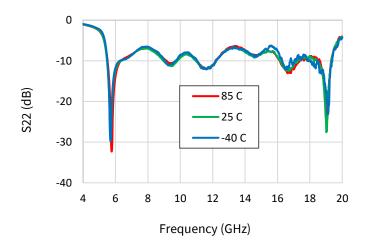
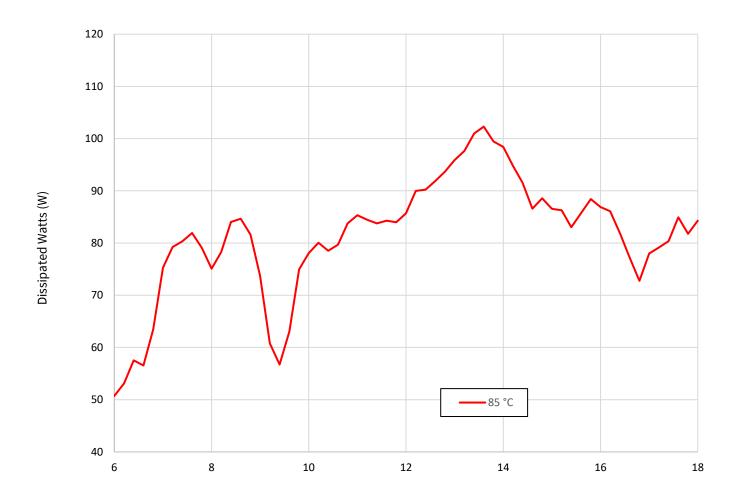
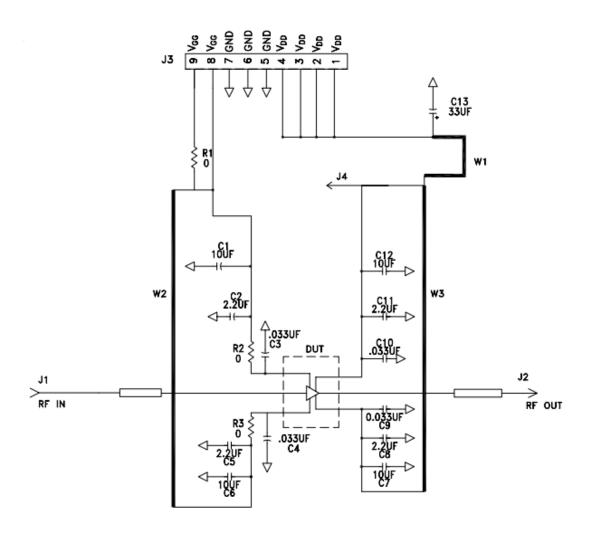


Figure 19: S11 v. Frequency v. Temperature

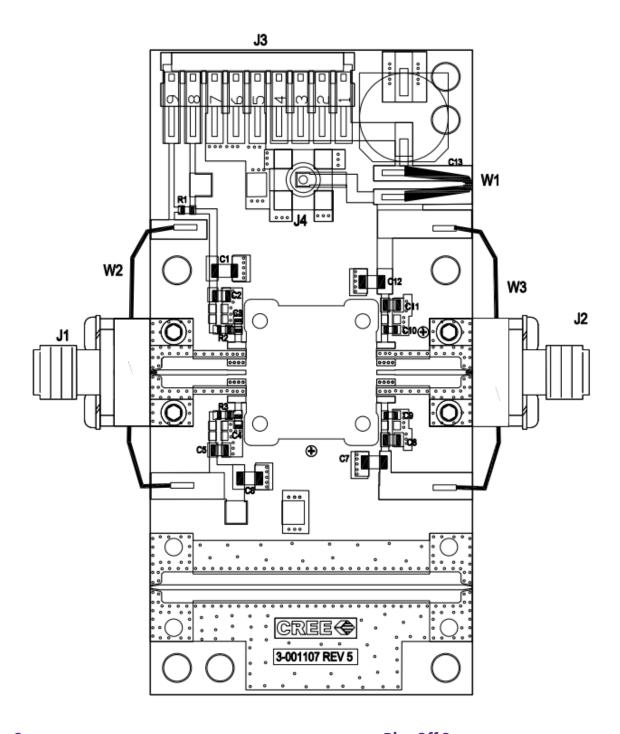

Figure 20: \$22 v. Frequency v. Temperature

Thermal Characteristics


Parameter	Symbol	Value	Operating Conditions
Operating Junction Temperature	T_J	231°C	Freq = 13.6 GHz, V _d = 22 V, I _{dq} = 1.2 A, I _{drive} = 5.6 A,
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.68°C/W	$P_{in} = 24 \text{ dBm}, P_{out} = 43.2 \text{ dBm}, P_{diss} = 102 \text{ W}, T_{case} = 60 ^{\circ}\text{C},$ CW

Power Dissipation v. Frequency (Tcase = 60°C)

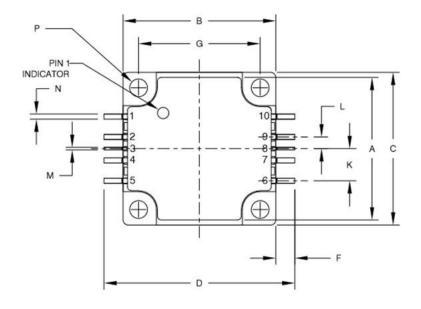
Frequency (GHz)


CMPA601J025F-AMP Evaluation Board Schematic Drawing

CMPA601J025F-AMP Evaluation Board Bill of Materials

Reference Designator	Description	Qty
R1,R2,R3	RES 0.0 OHM 1/10W 0603 SMD	3
C1,C6,C7,C12	CAP, 10uF, +/-10%, 50V, 1206	4
C2,C5,C8,C11	CAP, 2.2uF, +/-10%, 50V, 0805	4
C13	CAP, 33 uF, 20%, 100V, ELECTROLYTIC	1
C3,C4,C9,C10	CAP, .033uF, 50V,0603	4
-	PCB, RO3003, .010 THK, HPHF Package	1
-	BASEPLATE 3.0x1.5x0.25Cu	
J1,J2	CONN, SMA JACK (FEMALE) END LAUNCH CONNECTOR	
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
W1	WIRE, BLACK, 30 AWG	1
W2,W3	WIRE, BLACK, 22 AWG	2
U1	CMPA601J025F	1

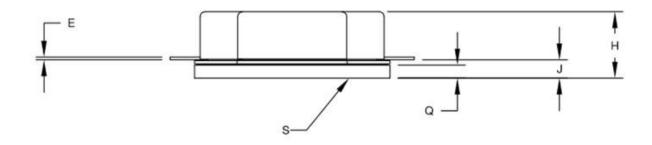
CMPA601J025F-AMP Evaluation Board Assembly Drawing


Bias On Sequence

- 1. Ensure RF is turned-off
- 2. Apply pinch-off voltage of -5 V to the gate (Vg)
- 3. Apply nominal drain voltage (Vd)
- 4. Adjust Vg to obtain desired quiescent drain current (Idq)
- 5. Apply RF

Bias Off Sequence

- 1. Turn RF off
- 2. Apply pinch-off to the gate (Vg=-5V)
- 3. Turn off drain voltage (Vd)
- 4. Turn off gate voltage (Vg)


Product Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED

 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

		INCHES		MILLIMETERS			
DIM MIN	TYP	MAX	MIN	TYP	MAX		
Α	.555	.560	.565	14.10	14.22	14.35	
В	.595	.600	.605	15.11	15.24	15.37	
С	.595	.600	.605	15.11	15.24	15.37	
D	-	(.750)		-	(19.05)	-	
Е	.006	.008	.010	0.15	0.20	0.25	
F	.065	.075	.085	1.66	1.91	2.16	
G	.473	.478	.483	12.01	12.14	12.27	
Н	.191	.203	.215	4.86	5.16	5.46	
J	.049	.056	.063	1.24	1.42	1.60	
K	.121	.126	.131	3.07	3.20	3.33	
L	.041	.046	.051	1.04	1.17	1.30	
М	.005	.010	.015	0.13	.25	0.38	
N	.015	.020	.025	0.38	.51	0.63	
Р	.065	.070	.075	1.65	1.78	1.90	
Q	.038	.040	.042	0.97	1.02	1.07	

PIN	DESC.	PIN	DESC
1	VG	6	VD
2	GND	7	GND
3	RF IN	8	RF OUT
4	GND	9	GND
5	VG	10	VD

Electrostatic Discharge (ESD) Classification

Parameter	Symbol	Class	Classification Level	Test Methodology
Human body Model	HBM	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

Product Ordering Information

Part Number	Description	MOQ Increment	Image
CMPA601J025F	6 – 18 GHz, 25W GaN MMIC		CHOREOLOGY TO THE PARTY OF THE
CMPA601J025F-AMP	Evaluation Board w/ PA	1 Each	

For more information, please contact:

Mailing Address

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact

RFSales@wolfspeed.com

RF Product Marketing Contact

RFMarketing@wolfspeed.com

Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.