


# CMPA801B025

25 W, 8.5 - 11.0 GHz, GaN MMIC, Power Amplifier

Cree's CMPA801B025 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC is available in a 10-lead metal/ceramic flanged package (CMPA801B025F) or small form-



PN: CMPA801B025F/ CMPA801B025P Package Type: 440213 / 440216

factor pill package (CMPA801B025P) for optimal electrical and thermal performance.

#### **Typical Performance Over 8.5-11.0 GHz** (T<sub>c</sub> = 25°C)

| Parameter                           | 8.5 GHz | 10.0 GHz | 11.0 GHz | Units |
|-------------------------------------|---------|----------|----------|-------|
| Output Power <sup>1</sup>           | 38.0    | 37.0     | 35.5     | W     |
| Output Power <sup>1</sup>           | 45.8    | 45.7     | 45.5     | dBm   |
| Power Added Efficiency <sup>1</sup> | 37.0    | 36.0     | 35.0     | %     |

Note1: Measured in CMPA801B025F-AMP under 100 uS pulse width, 10% duty.

#### **Features**

- 8.5 11.0 GHz Operation
- 37 W Pour typical
- 16 dB Power Gain
- 36 % Typical PAE
- 50 Ohm internally matched
- <0.1 dB Power droop</li>

#### Applications

- Marine Radar
- Communications
- Satellite Communication Uplink



# Absolute Maximum Ratings (not simultaneous)

| Parameter                            | Symbol                 | Rating    | Units           | Conditions                                                            |
|--------------------------------------|------------------------|-----------|-----------------|-----------------------------------------------------------------------|
| Drain-source Voltage                 | V <sub>DSS</sub>       | 84        | V <sub>DC</sub> | 25°C                                                                  |
| Gate-source Voltage                  | V <sub>gs</sub>        | -10, +2   | V <sub>DC</sub> | 25°C                                                                  |
| Power Dissipation                    | P <sub>DISS</sub>      | 77        | W               |                                                                       |
| Storage Temperature                  | T <sub>stg</sub>       | -55, +150 | °C              |                                                                       |
| Operating Junction Temperature       | Tj                     | 225       | °C              |                                                                       |
| Maximum Forward Gate Current         | I <sub>GMAX</sub>      | 13        | mA              | 25°C                                                                  |
| Soldering Temperature <sup>1</sup>   | Τ <sub>s</sub>         | 245       | °C              |                                                                       |
| Screw Torque                         | τ                      | 40        | in-oz           |                                                                       |
| Thermal Resistance, Junction to Case | $R_{_{	ext{	hetaJC}}}$ | 1.22      | °C/W            | Pulse Width = 100 $\mu$ s, Duty Cycle = 10%, P <sub>DISS</sub> = 55 W |
| Thermal Resistance, Junction to Case | $R_{_{	ext{	heta}JC}}$ | 1.80      | °C/W            | CW, $P_{DISS} = 55 \text{ W}, 85^{\circ}\text{C}$                     |
| Case Operating Temperature           | Т <sub>с</sub>         | -40, +130 | °C              | Pulse Width = 100 $\mu$ s, Duty Cycle = 10%, P <sub>DISS</sub> = 55 W |
| Case Operating Temperature           | Т <sub>с</sub>         | -40, +90  | °C              | CW, P <sub>DISS</sub> = 55 W                                          |

Note:

<sup>1</sup> Refer to the Application Note on soldering at <u>www.cree.com/RF/Document-Library</u>

# Electrical Characteristics (Frequency = 8.5 GHz to 11.0 GHz unless otherwise stated; $T_c = 25^{\circ}C$ )

| Characteristics                      | Symbol              | Min. | Тур. | Max. | Units | Conditions                                                                                                                     |
|--------------------------------------|---------------------|------|------|------|-------|--------------------------------------------------------------------------------------------------------------------------------|
| DC Characteristics <sup>1</sup>      |                     |      |      |      |       |                                                                                                                                |
| Gate Threshold                       | V <sub>GS(TH)</sub> | -3.8 | -3.0 | -2.3 | V     | $V_{_{\rm DS}}$ = 10 V, I $_{_{\rm D}}$ = 13.2 mA                                                                              |
| Gate Quiscent Voltage                | V <sub>q</sub>      | -    | -2.7 | -    | V     | $V_{_{DS}}$ = 28 V, I $_{_{D}}$ = 1.2 A                                                                                        |
| Saturated Drain Current <sup>2</sup> | I <sub>DS</sub>     | 10.6 | 13.0 | -    | А     | $V_{_{ m DS}}$ = 6.0 V, $V_{_{ m GS}}$ = 2.0 V                                                                                 |
| Drain-Source Breakdown Voltage       | V <sub>BD</sub>     | 84   | 100  | -    | V     | $V_{_{\rm GS}}$ = -8 V, I $_{_{\rm D}}$ = 13.2 mA                                                                              |
| RF Characteristics <sup>3</sup>      |                     |      |      |      |       |                                                                                                                                |
| Small Signal Gain                    | S21                 | 20   | 24   | -    | dB    | $V_{_{DD}}$ = 28 V, I $_{_{DQ}}$ = 1.2 A,<br>P $_{_{IN}}$ = -20 dBm                                                            |
| Input Return Loss                    | S11                 | -    | -6.0 | -    | dB    | $V_{_{ m DD}}$ = 28 V, $I_{_{ m DQ}}$ = 1.2 A                                                                                  |
| Output Return Loss                   | S22                 | -    | -6.0 | -    | dB    | $V_{DD}$ = 28 V, $I_{DQ}$ = 1.2 A                                                                                              |
| Output Mismatch Stress               | VSWR                | -    | -    | 5:1  | Ψ     | No damage at all phase angles, $V_{DD}$ = 28 V, $I_{DQ}$ = 1.2 A,<br>Pulse Width = 100 µs, Duty Cycle = 10%, $P_{IN}$ = 30 dBm |

Notes:

<sup>1</sup> Measured on-wafer prior to packaging.

<sup>2</sup> Scaled from PCM data.

<sup>3</sup> Measured in the CMPA801B025F-AMP.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

# CREE ᆃ

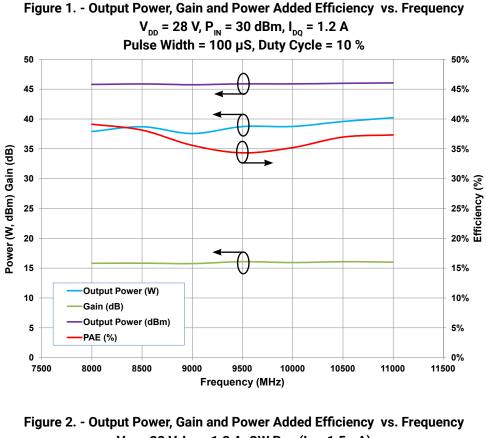
# Electrical Characteristics Continued... (T<sub>c</sub> = 25°C)

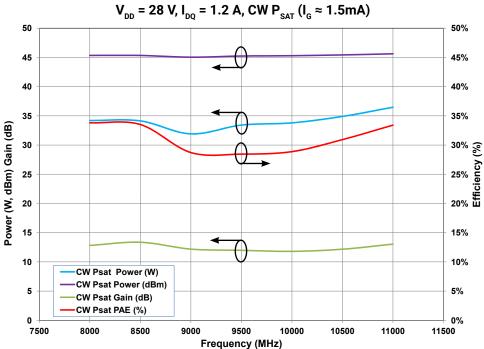
| Characteristics                   | Symbol            | Min.  | Тур. | Max. | Units | Conditions                                                                                         |
|-----------------------------------|-------------------|-------|------|------|-------|----------------------------------------------------------------------------------------------------|
| RF Characteristics <sup>1,2</sup> |                   |       |      |      |       |                                                                                                    |
| Output Power                      | P <sub>OUT1</sub> | 44.75 | 45.8 | -    | dBm   | $V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 1.2 A, Frequency = 8.5 GHz, $P_{_{IN}}$ = 30 dBm                 |
| Output Power                      | P <sub>OUT2</sub> | 44.75 | 45.7 | -    | dBm   | $V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 1.2 A, Frequency = 10.0 GHz, $P_{_{\rm IN}}$ = 30 dBm            |
| Output Power                      | P <sub>OUT3</sub> | 44.35 | 45.5 | -    | dBm   | $\rm V_{\rm DD}$ = 28 V, $\rm I_{\rm DQ}$ = 1.2 A, Frequency = 11.0 GHz, $\rm P_{\rm IN}$ = 30 dBm |
| Power Gain                        | G <sub>1</sub>    | 14.75 | 15.8 | -    | dB    | $V_{_{DD}}$ = 28 V, I $_{_{DQ}}$ = 1.2 A, Frequency = 8.5 GHz, P $_{_{\rm IN}}$ = 30 dBm           |
| Power Gain                        | G <sub>2</sub>    | 14.75 | 15.7 | -    | dB    | $\rm V_{\rm DD}$ = 28 V, $\rm I_{\rm DQ}$ = 1.2 A, Frequency = 10.0 GHz, $\rm P_{\rm IN}$ = 30 dBm |
| Power Gain                        | G <sub>3</sub>    | 14.35 | 15.5 | -    | dB    | $\rm V_{\rm DD}$ = 28 V, $\rm I_{\rm DQ}$ = 1.2 A, Frequency = 11.0 GHz, $\rm P_{\rm IN}$ = 30 dBm |
| Power Added Efficiency            | PAE <sub>1</sub>  | 29    | 37   | -    | %     | $V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 1.2 A, Frequency = 8.5 GHz, $P_{_{IN}}$ = 30 dBm                 |
| Power Added Efficiency            | PAE <sub>2</sub>  | 29    | 36   | -    | %     | $\rm V_{\rm DD}$ = 28 V, $\rm I_{\rm DQ}$ = 1.2 A, Frequency = 10.0 GHz, $\rm P_{\rm IN}$ = 30 dBm |
| Power Added Efficiency            | PAE <sub>3</sub>  | 27    | 35   | -    | %     | $V_{_{DD}}$ = 28 V, I $_{_{DQ}}$ = 1.2 A, Frequency = 11.0 GHz, $P_{_{\rm IN}}$ = 30 dBm           |
| Pulse Amplitude Droop             | D                 | -     | 0.1  | -    | dB    | $V_{_{DD}}$ = 28 V, I $_{_{DQ}}$ = 1.2 A, Frequency = 8.5 - 11.0 GHz, P $_{_{\rm IN}}$ = 30 dBm    |

Notes:

<sup>1</sup> Pulse Width = 100  $\mu$ S, Duty Cycle = 10 %.

<sup>2</sup> Measured in CMPA801B025F-AMP.


# **Electrostatic Discharge (ESD) Classifications**


| Parameter           | Symbol | Class            | Test Methodology    |
|---------------------|--------|------------------|---------------------|
| Human Body Model    | НВМ    | 1A (> 250 V)     | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | II (200 < 500 V) | JEDEC JESD22 C101-C |

Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.



#### CMPA801B025F Typical Performance





Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

4



# CMPA801B025F Typical Performance

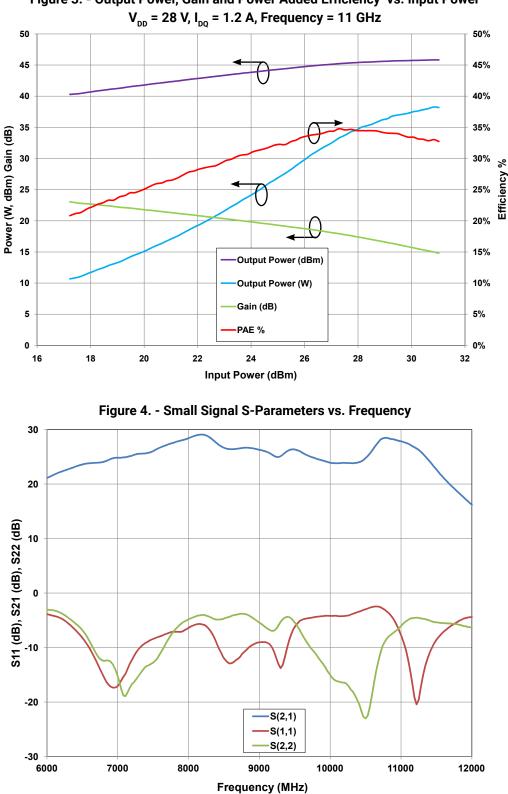



Figure 3. - Output Power, Gain and Power Added Efficiency vs. Input Power

Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

5 CMPA801B025 Rev 4.0



# CMPA801B025F Typical Performance

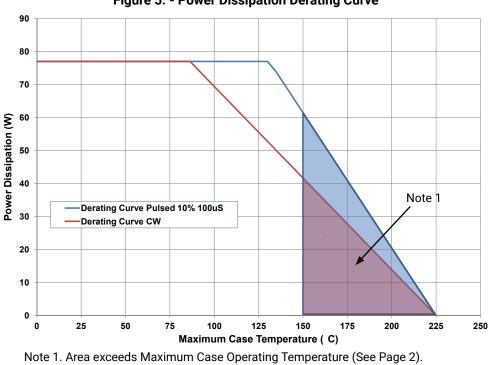



Figure 5. - Power Dissipation Derating Curve

Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

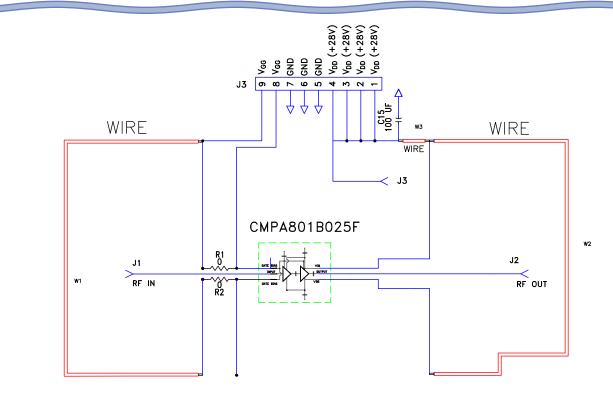


# CMPA801B025F-AMP Demonstration Amplifier Circuit Bill of Materials

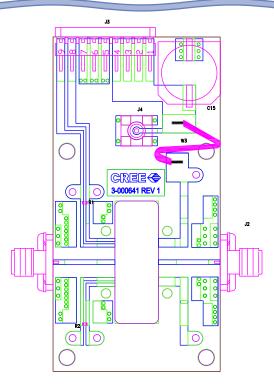
| Designator | Description                                                            | Qty |
|------------|------------------------------------------------------------------------|-----|
| C15        | CAP ELECT 100UF 80V AFK SMD                                            | 1   |
| R1, R2     | RES 0.0 OHM 1/16W 0402 SMD                                             | 2   |
| W1         | WIRE, BLACK, 22 AWG ~ 1.50"                                            | 1   |
| W2         | WIRE, BLACK, 22 AWG ~ 1.75"                                            | 1   |
| W3         | WIRE, BLACK, 22 AWG ~ 2.0"                                             | 1   |
| J1,J2      | CONNECTOR, SMA, PANEL MOUNT JACK, FLANGE,<br>4-HOLE, BLUNT POST, 20MIL | 2   |
| J3         | CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS                                | 1   |
| J4         | CONNECTOR, SMB-U SURFACE MOUNT                                         | 1   |
| -          | PCB, TEST FIXTURE, TACONICS RF35P, 20 MILS, 440208 PKG                 | 1   |
| -          | 2-56 SOC HD SCREW 1/4 SS                                               | 4   |
| -          | #2 SPLIT LOCKWASHER SS                                                 | 4   |
| Q1         | CMPA801B025F                                                           | 1   |

# CMPA801B025F-AMP Demonstration Amplifier Circuit




Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

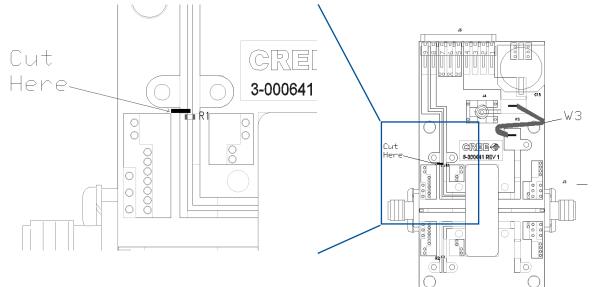

7 CMPA801B025 Rev 4.0



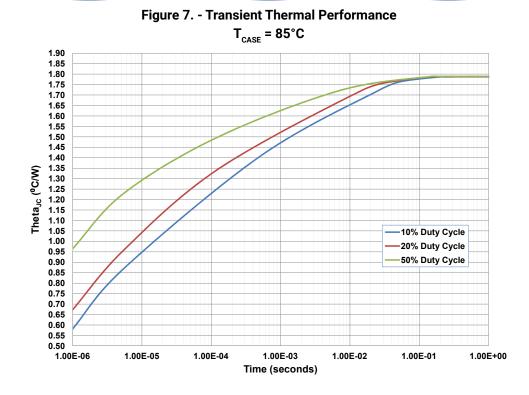
#### CMPA801B025F-AMP Demonstration Amplifier Circuit Schematic



#### CMPA801B025F-AMP Demonstration Amplifier Circuit Outline




Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.



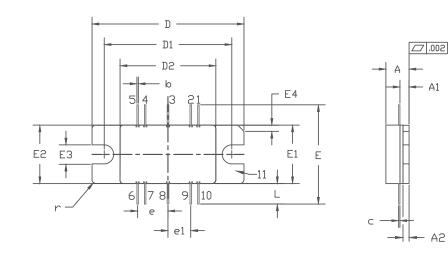

#### CMPA801B025F-AMP Demonstration Amplifier Circuit Schematic

To configure the CMPA801B025F test fixture to enable independent  $V_{g1} / V_{g2}$  control of the device, a cut must be made to the microstrip line just above the R1 resistor as shown. Pin 9 will then supply  $V_{g1}$  and Pin 8 will supply  $V_{g2}$ .



#### CMPA801B025F Typical Performance




Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1,919.313.5300 Fax: +1,919.869.2733 www.cree.com/rf

9 CMPA801B025 Rev 4.0

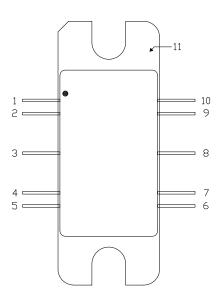


#### Product Dimensions CMPA801B025F (Package Type - 440213)



NDTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M -1994.

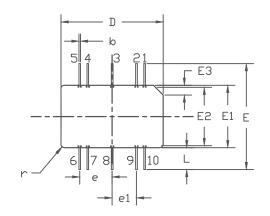

2. CONTROLLING DIMENSION: INCH.

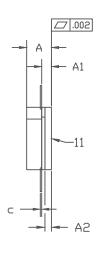
3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

|     | INC   | INCHES    |       | IETERS | NOTES       |
|-----|-------|-----------|-------|--------|-------------|
| DIM | MIN   | MAX       | MIN   | MAX    |             |
| Α   | 0.148 | 0.168     | 3.76  | 4.27   |             |
| A1  | 0.055 | 0.065     | 1.40  | 1.65   |             |
| A2  | 0.035 | 0.045     | 0.89  | 1.14   |             |
| b   | 0.01  | TYP       | 0.254 | TYP    | 10x         |
| с   | 0.007 | 0.009     | 0.18  | 0.23   |             |
| D   | 0.995 | 1.005     | 25.27 | 25.53  |             |
| D1  | 0.835 | 0.845     | 21.21 | 21.46  |             |
| D2  | 0.623 | 0.637     | 15.82 | 16.18  |             |
| Е   | 0.653 | 5 TYP     | 16.59 | TYP    |             |
| E1  | 0.380 | 0.390     | 9.65  | 9.91   |             |
| E2  | 0.380 | 0.390     | 9.65  | 9.91   |             |
| E3  | 0.120 | 0.130     | 3.05  | 3.30   |             |
| E4  | 0.035 | 0.045     | 0.89  | 1.14   | 45° CHAMFER |
| е   | 0.20  | 0.200 TYP |       | TYP    | 4x          |
| e1  | 0.15  | 0 TYP     | 3.81  | TYP    | 4x          |
| L   | 0.115 | 0.155     | 2.92  | 3.94   | 10x         |
| r   | 0.02  | 5 TYP     | .635  | TYP    | Зx          |

| Pin Number | Qty                   |
|------------|-----------------------|
| 1          | Gate Bias for Stage 2 |
| 2          | Gate Bias for Stage 2 |
| 3          | RF In                 |
| 4          | Gate Bias for Stage 1 |
| 5          | Gate Bias for Stage 1 |
| 6          | Drain Bias            |
| 7          | Drain Bias            |
| 8          | RF Out                |
| 9          | Drain Bias            |
| 10         | Drain Bias            |
| 11         | Source                |





PIN 1: GATE BIAS 6: DRAIN BIAS 2: GATE BIAS 7: DRAIN BIAS 3: RF IN 8: RF DUT 4: GATE BIAS 9: DRAIN BIAS 5: GATE BIAS 10: DRAIN BIAS 11: SDURCE

Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.



### Product Dimensions CMPA801B025P (Package Type - 440216)





PIN 1: GATE BIAS 6: DRAIN BIAS 2: GATE BIAS 7: DRAIN BIAS 3: RF IN 8: RF DUT 4: GATE BIAS 9: DRAIN BIAS 5: GATE BIAS 10: DRAIN BIAS 11: SDURCE NOTES:

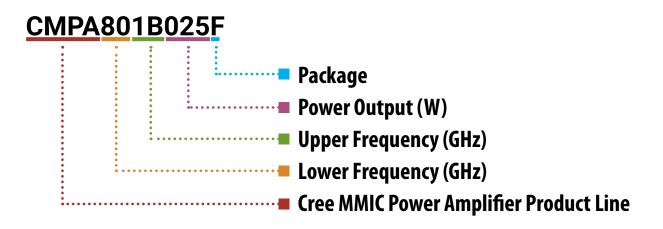
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M - 1994.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

|     | INC       | HES   | MILLIM | IETERS | NOTES       |
|-----|-----------|-------|--------|--------|-------------|
| DIM | MIN       | МАХ   | MIN    | MAX    |             |
| Α   | 0.148     | 0.168 | 3.76   | 4.27   |             |
| A1  | 0.055     | 0.065 | 1.40   | 1.65   |             |
| A2  | 0.035     | 0.045 | 0.89   | 1.14   |             |
| b   | 0.01      | TYP   | 0.254  | TYP    | 10x         |
| с   | 0.007     | 0.009 | 0.18   | 0.23   |             |
| D   | 0.623     | 0.637 | 15.82  | 16.18  |             |
| E   | 0.653     | 5 TYP | 16.59  | TYP    |             |
| E1  | 0.380     | 0.390 | 9.65   | 9.91   |             |
| E2  | 0.380     | 0.390 | 9.65   | 9.91   |             |
| E3  | 0.080     | 0.090 | 2.03   | 2.29   | 45° CHAMFER |
| e   | 0.20      | D TYP | 5.08   | TYP    | 4x          |
| e1  | 0.150 TYP |       | 3.81   | TYP    | 4x          |
| L   | 0.115     | 0.155 | 2.92   | 3.94   | 10x         |
| r   | 0.02      | D TYP | .508   | TYP    | Зx          |


| Pin Number | Qty                   |
|------------|-----------------------|
| 1          | Gate Bias for Stage 2 |
| 2          | Gate Bias for Stage 2 |
| 3          | RF In                 |
| 4          | Gate Bias for Stage 1 |
| 5          | Gate Bias for Stage 1 |
| 6          | Drain Bias            |
| 7          | Drain Bias            |
| 8          | RF Out                |
| 9          | Drain Bias            |
| 10         | Drain Bias            |
| 11         | Source                |

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.



Part Number System



| Parameter                    | Value  | Units |
|------------------------------|--------|-------|
| Lower Frequency              | 8.5    | GHz   |
| Upper Frequency <sup>1</sup> | 11.0   | GHz   |
| Power Output                 | 25     | W     |
| Package                      | Flange | -     |



**Note**<sup>1</sup>: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

| Character Code | Code Value                     |
|----------------|--------------------------------|
| А              | 0                              |
| В              | 1                              |
| С              | 2                              |
| D              | 3                              |
| E              | 4                              |
| F              | 5                              |
| G              | 6                              |
| н              | 7                              |
| J              | 8                              |
| К              | 9                              |
| Examples:      | 1A = 10.0 GHz<br>2H = 27.0 GHz |

Table 2.

Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.



### **Product Ordering Information**

| Order Number     | Description                        | Unit of Measure | Image                                   |
|------------------|------------------------------------|-----------------|-----------------------------------------|
| CMPA801B025F     | GaN HEMT                           | Each            | CREE COPAGO<br>CAPAGO 18025F<br>C229485 |
| CMPA801B025P     | GaN HEMT                           | Each            | CREE<br>CMP ABO TBO25P<br>E7325S        |
| CMPA801B025F-TB  | Test board without GaN HEMT        | Each            |                                         |
| CMPA801B025F-AMP | Test board with GaN HEMT installed | Each            |                                         |

Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

# CREE ᆃ

#### Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RE

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639

Copyright © 2011-2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.