CMPA9396025S

9.3 - 9.6 GHz, 25 W, Packaged GaN MMIC Power Amplifier

Description

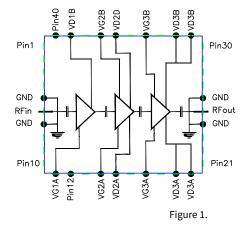
Wolfspeed's CMPA9396025S is a GaN MMIC designed specifically from 9.3-9.6 GHz to be compact and provide high-efficiency, which makes it ideal for marine radar amplifier applications. The MMIC delivers 25W at 100usec pulse width and 10% duty cycle. The 50-ohm, 3-stage MMIC is available in a plastic surface-mount package.

PN: CMPA9396025S Package Type: 6 x 6 QFN

Typical Performance Over 9.3 - 9.6 GHz ($T_c = 25$ °C)

Parameter	9.3 GHz	9.4 GHz	9.5 GHz	9.6 GHz	Units
Small Signal Gain	36.0	35.9	35.9	36.2	dB
Output Power ¹	37.0	37.5	37.5	37.0	W
Power Gain ¹	26.7	26.7	26.7	26.7	dB
Power Added Efficiency ¹	41	42	42	41	%

Notes:


Features

- 9.3 9.6 GHz Operation
- 30 W Typical Output Power
- 27 dB Power Gain
- 50-ohm Matched for Ease of Use
- Plastic Surface-Mount Package, 6x6 mm QFN

Note: Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

Applications

- Marine radar
- · Military radar

 $^{^{1}}P_{IN}$ = 19 dBm, Pulse Width = 100 μ s; Duty Cycle = 10%, V_{D} = 40 V, I_{DO} = 260 mA

Absolute Maximum Ratings (not simultaneous) at 25 °C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	$V_{\scriptscriptstyle DSS}$	120	VDC	25°C
Gate-source Voltage	$V_{\sf GS}$	-10, +2	VDC	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Maximum Forward Gate Current	I _G	8.6	mA	25°C
Maximum Drain Current	I _{DMAX}	8.6	Α	
Soldering Temperature	T _s	260	°C	

Electrical Characteristics (Frequency = 9.3 GHz to 9.6 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{\rm GS(TH)}$	-3.6	-	-2.4	V	$V_{DS} = 10 \text{ V}, I_{D} = 8.6 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.65	-	$V_{_{DC}}$	$V_{DD} = 40 \text{ V}, I_{DQ} = 260 \text{ mA}$
Saturated Drain Current ²	I _{DS}	6.2	8.6	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{\mathrm{BD}}}$	100	-	-	V	$V_{GS} = -8 \text{ V}, I_{D} = 8.6 \text{ mA}$
RF Characteristics ^{3,4}						
Small Signal Gain	S21 ₁	-	36.0	-	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 260 \text{ mA}, \text{Freq} = 9.3 \text{ GHz}$
Small Signal Gain	S21 ₂	-	36.2	-	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 260 \text{ mA}, \text{Freq} = 9.6 \text{ GHz}$
Output Power	P _{OUT1}	-	37.0	-	W	V _{DD} = 40 V, I _{DQ} = 260 mA, Freq = 9.3 GHz
Output Power	P _{OUT2}	-	37.0	-	W	V _{DD} = 40 V, I _{DQ} = 260 mA, Freq = 9.6 GHz
Power Added Efficiency	PAE ₁	-	41	_	%	V _{DD} = 40 V, I _{DQ} = 260 mA, Freq = 9.3 GHz
Power Added Efficiency	PAE ₂	_	41	-	%	V _{DD} = 40 V, I _{DQ} = 260 mA, Freq = 9.6 GHz
Power Gain	G _P	-	26.0	-	dB	V _{DD} = 40 V, I _{DQ} = 260 mA, P _{IN} = 19 dBm
Input Return Loss	S11	-	-11.4	-	dB	V _{DD} = 40 V, I _{DQ} = 260 mA, Freq = 9.3 - 9.6 GHz
Output Return Loss	S22	-	-8.2	-	dB	V _{DD} = 40 V, I _{DQ} = 260 mA, Freq = 9.3 - 9.6 GHz
Output Mismatch Stress	VSWR	-	_	3:1	Ψ	No damage at all phase angles, $V_{\rm DD}$ = 40 V, $I_{\rm DQ}$ = 260 mA, $P_{\rm IN}$ = 19 dBm

Notes

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	$T_{_{J}}$	225	°C	
Thermal Resistance, Junction to Case (packaged) ¹	$R_{\theta JC}$	1.94	°C/W	Pulse Width = 100 µs, Duty Cycle =10%

Notes

¹ Measured on wafer prior to packaging

 $^{^{\}mathrm{2}}$ Scaled from PCM data

³ Measured in CMPA9396025S high volume test fixture at 9.3 and 9.6 GHz and may not show the full capability of the device due to source inductance and thermal performance.

 $^{^4}$ P $_{\mbox{\tiny IN}}$ = 19 dBm, Pulse Width = 25 $\mu s;$ Duty Cycle = 1%

 $^{^{\}rm 1}$ Measured for the CMPA9396025S at P $_{\rm DISS}$ = 28.6 W

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 260 \text{ mA}$, PW = 100 μ s, DC = 10%, Pin = 19 dBm, $T_{BASE} = +25 ^{\circ}\text{C}$

Figure 1. Output Power vs Frequency as a Function of Temperature

49.6

49.6

47.6

43.6

43.6

43.6

43.6

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

Figure 2. Output Power vs Frequency as a Function of Input Power

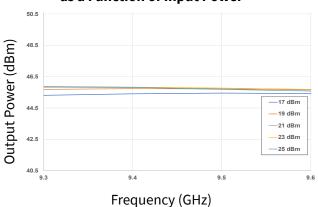


Figure 3. Power Added Eff. vs Frequency as a Function of Temperature

Frequency (GHz)

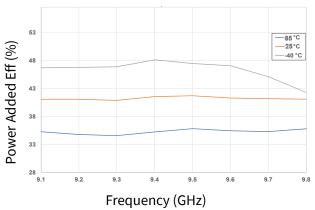


Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

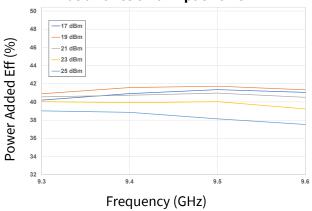


Figure 5. Drain Current vs Frequency as a Function of Temperature

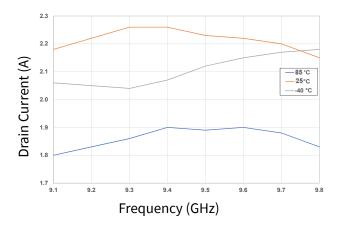
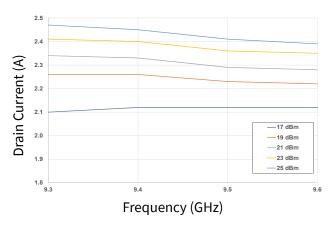



Figure 6. Drain Current vs Frequency as a Function of Input Power

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DQ} = 260 \text{ mA}$, PW = 100 μ s, DC = 10%, Pin = 19 dBm, $T_{BASE} = +25 \, ^{\circ}\text{C}$

Figure 7. Output Power vs Frequency as a Function of VD

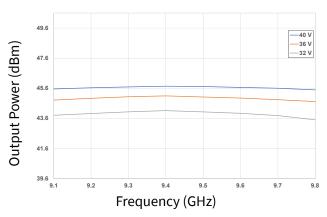


Figure 8. Output Power vs Frequency as a Function of IDQ

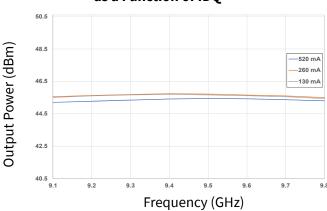


Figure 9. Power Added Eff. vs Frequency as a Function of VD

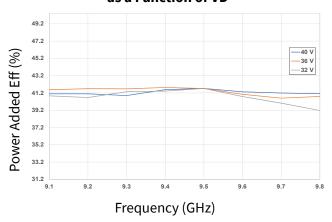
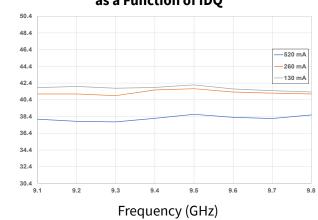



Figure 10. Power Added Eff. vs Frequency as a Function of IDQ

Power Added Eff (%)

Figure 11. Drain Current vs Frequency as a Function of VD

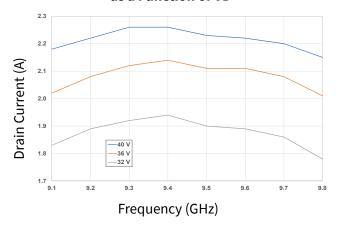
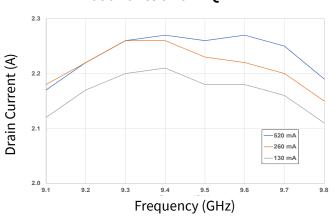



Figure 12. Drain Current vs Frequency as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 260 \text{ mA}$, PW = 100 μ s, DC = 10%, Pin = 19 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 13. Output Power vs Input Power as a Function of Frequency

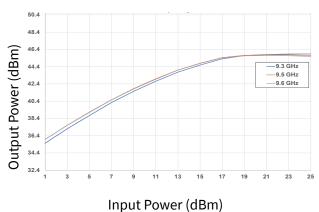
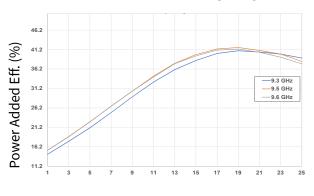



Figure 14. Power Added Eff. vs Input Power as a Function of Frequency

Input Power (dBm)

Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

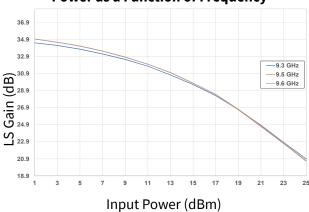


Figure 16. Drain Current vs Input Power as a Function of Frequency

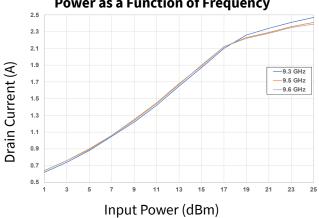
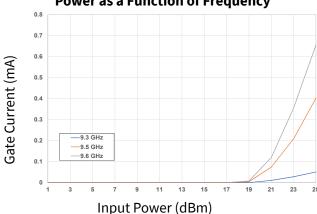



Figure 17. Gate Current vs Input Power as a Function of Frequency

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DQ} = 260 \text{ mA}$, $PW = 100 \text{ }\mu\text{s}$, DC = 10%, Pin = 19 dBm, $T_{BASE} = +25 \text{ }^{\circ}\text{C}$

Figure 18. Output Power vs Input **Power as a Function of Temperature**

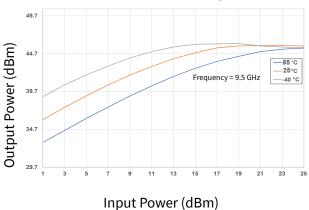
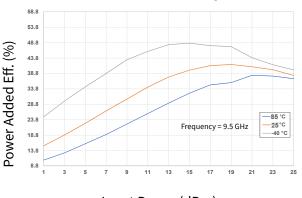



Figure 19. Power Added Eff. vs Input **Power as a Function of Temperature**

Input Power (dBm)

Figure 20. Large Signal Gain vs Input **Power as a Function of Temperature**

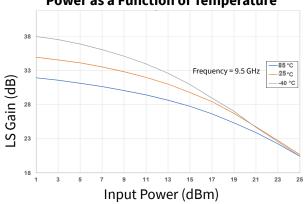


Figure 21. Drain Current vs Input **Power as a Function of Temperature**

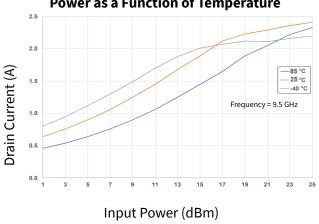
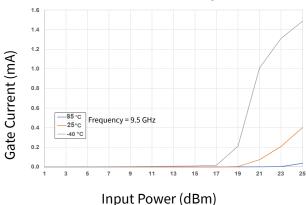



Figure 22. Gate Current vs Input **Power as a Function of Temperature**

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 260 \text{ mA}$, PW = 100 μ s, DC = 10%, Pin = 19 dBm, $T_{BASE} = +25 \,^{\circ}\text{C}$

Figure 23. Output Power vs Input Power as a Function of IDQ

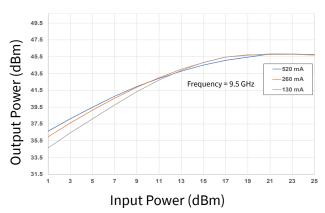


Figure 24. Power Added Eff. vs Input Power as a Function of IDQ

Figure 25. Large Signal Gain vs Input Power as a Function of IDQ

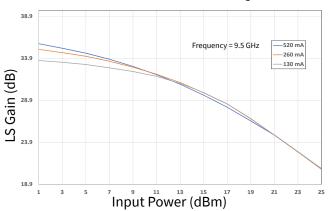


Figure 26. Drain Current vs Input Power as a Function of IDQ

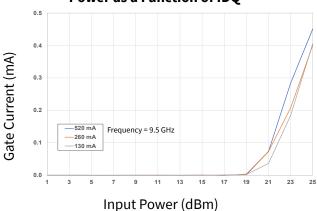



Figure 27. Gate Current vs Input Power as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 260 \text{ mA}$, PW = 100 μ s, DC = 10%, Pin = 19 dBm, $T_{BASE} = +25 ^{\circ}\text{C}$

Figure 28. 2nd Harmonic vs Frequency as a Function of Temperature

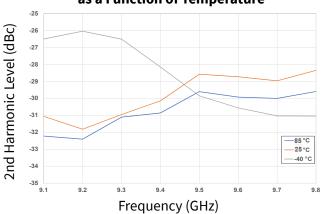


Figure 29. 3rd Harmonic vs Frequency as a Function of Temperature

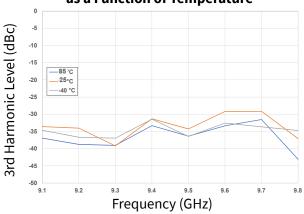


Figure 30. 2nd Harmonic vs Output Power as a Function of Frequency

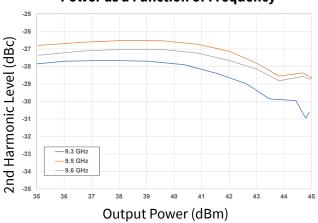


Figure 31. 3rd Harmonic vs Output Power as a Function of Frequency

Figure 32. 2nd Harmonic vs Output Power as a Function of IDQ

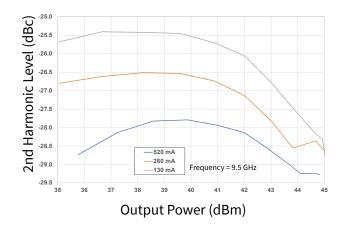
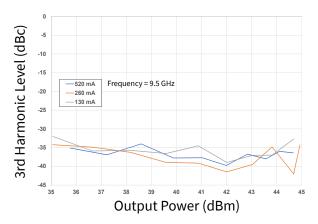
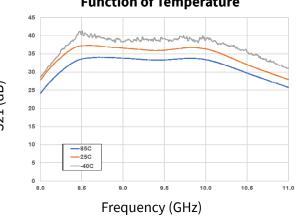




Figure 33. 3rd Harmonic vs Output Power as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DQ} = 260 \text{ mA}$, Pin = -30 dBm, $T_{BASE} = +25 \, ^{\circ}\text{C}$

Figure 34. Gain vs Frequency as a Function of Temperature

1 3, ,

Figure 36. Input RL vs Frequency as a

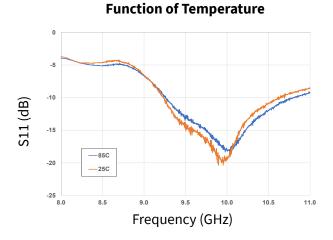


Figure 38. Output RL vs Frequency as a Function of Temperature

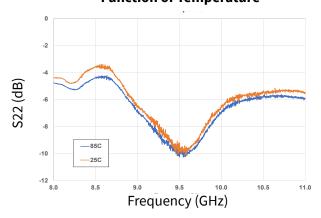


Figure 35. Gain vs Frequency as a Function of Temperature

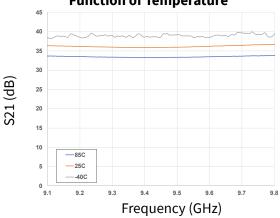


Figure 37. Input RL vs Frequency as a Function of Temperature

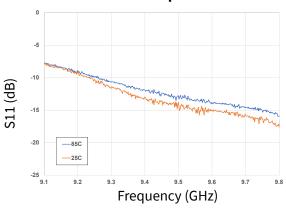
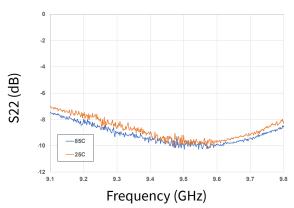



Figure 39. Output RL vs Frequency as a Function of Temperature

Typical Performance of the CMPA9396025S

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 260 \text{ mA}$, Pin = -30 dBm, $T_{BASE} = +25 \text{ }^{\circ}\text{C}$

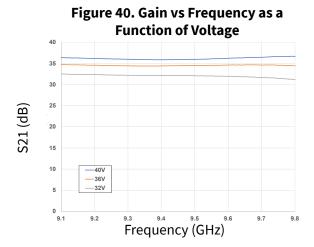


Figure 41. Gain vs Frequency as a Function of IDQ

40
35
30
25
20
15
10
-130mA
-260mA
5
0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
Frequency (GHz)

Figure 42. Input RL vs Frequency as a

Figure 43. Input RL vs Frequency as a Function of IDQ

Output

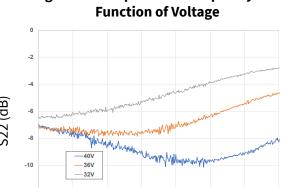
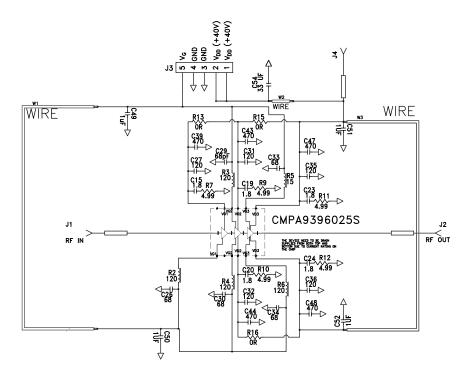



Figure 44. Output RL vs Frequency as a

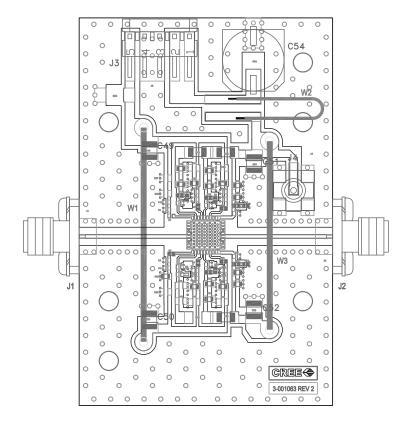

Frequency (GHz)

Figure 45. Output RL vs Frequency as a Function of IDQ

CMPA9396025S-AMP1 Application Circuit

CMPA9396025S-AMP1 Evaluation Board Layout

CMPA9396025S -----

Designator	Description	Qty
C54	CAP, 33 UF, 20%, G CASE	1
C49, C50, C51, C52	CAP, 1.0UF, 100V, 10%, X7R, 1210	4
C39, C43, C44, C47, C48	CAP, 470PF, 5%, 100V, 0603, X7R	5
C26, C29, C30, C33, C34	CAP, 68pF, +/-5%pF, 0603, ATC	5
C27, C31, C32, C35, C36	CAP, 120pF, +/-5%, COG, 0603, 100V	5
C15, C19, C20, C23, C24	CAP, 1.8PF, +/-0.05PF, ATC 600L, 0402	5
R2-R6	Ferrite bead, 1200hm, 600mA, 0402	5
R7, R9-R12	RES 4.99 OHM, +/-1%, 1/16W, 0402	5
R13, R15, R16	RES 0.0 OHM 1/16W 1206 SMD	3
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	HEADER RT>PLZ .1CEN LK 5POS	1
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
W1	WIRE, BLACK, 20 AWG ~ 1.5"	1
W2	WIRE, BLACK, 20 AWG ~ 1.3"	1
W3	WIRE, BLACK, 20 AWG ~ 1.5"	1
	PCB, TEST FIXTURE, RF35, 0.010", 6X6 3-STAGE, QFN	1
	HEATSINK, 6X6 QFN, 3-STAGE 2.600 X 1.700 X 0.250	1
	2-56 SOC HD SCREW 3/16 SS	4
	#2 SPLIT LOCKWASHER SS	4
Q1	CMPA9396025S	1

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1B (≥ 500 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

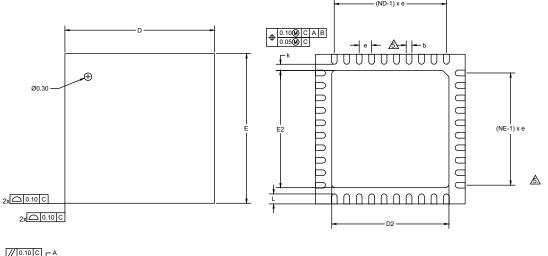
Product Dimensions CMPA9396025S (Package 6 x 6 QFN)

- 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M. 1994
 2. ALL DIMENSIONS ARE IN MILLIMETERS, 0 IS IN DEGREES
 3. N IS THE TOTAL NUMBER OF TEMRINALS

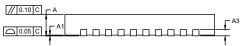
 DIMENSION to APPLIES TO THE METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP

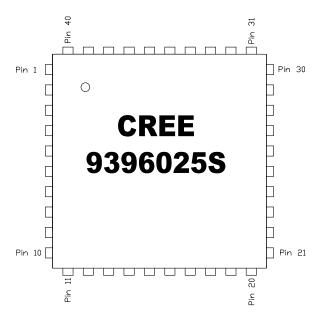
 5. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY

 6. MAX. PACKAGE WARPAGE IS 0.05mm


 7. MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS

 PIN #1 ID ON TOP WILL BE LASER MARKED


 9. B ILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS


 10. THIS DRAWING CONFORMS TO JEDEC REGISTERED OUTLINE MO-220

 11. ALL PLATED SURFACES ARE TIN 0.010mm +/- 0.005mm

SYM	MIN	NOM	MAX	NOTE
Α	0.80	0.86	0.91	
A1	0.00	0.03		
A3		.25 RE		
k).15 MI		
D		6.0 BS		
E		3.0 BS		
е	0	.50 BS 40	С	
N		3		
ND		<u>/s\</u>		
NE		<u>_</u> 5_		
L	0.35		0.46	
b	0.20	0.23	0.28	<u>\$</u>
D2	4.60	4.70	4.80	
F2	4 60	4 70	4 80	

PIN	DESC.	PIN	DESC.	PIN	DESC.
1	NC	15	VD2A	29	NC
2	NC	16	NC	30	NC
3	NC	17	VG3A	31	VD3B
4	NC	18	NC	32	VD3B
5	RFGND	19	VD3A	33	NC
6	RFIN	20	VD3A	34	VG3B
7	RFGND	21	NC	35	NC
8	NC	22	NC	36	VD2B
9	NC	23	NC	37	VG2B
10	NC	24	RFGND	38	NC
11	VG1A	25	RFOUT	39	VD1B
12	NC	26	RFGND	40	NC
13	NC	27	NC		
14	VG2A	28	NC		

Part Number System

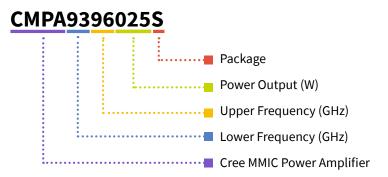


Table 1.

Parameter	Value	Units
Lower Frequency	9.3	GHz
Upper Frequency	9.6	GHz
Power Output	25	W
Package	Surface Mount	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
Е	4
F	5
G	6
Н	7
J	8
K	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA9396025S	Packaged GaN MMIC PA	Each	of the last of the same of the
CMPA9396025S-AMP1	Evaluation Board with GaN MMIC Installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

CMPA9396025S 16

Notes

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

 $@\ 2020\ Cree,\ Inc.\ All\ rights\ reserved.\ Wolfspeed\\ @\ and\ the\ Wolfspeed\ logo\ are\ registered\ trademarks\ of\ Cree,\ Inc.\ Property of\ Cree,\ Property of\ Cree,\ Property\ Cree,\ P$