ThinkRF R5550

Real-Time Spectrum Analyzer 9 kHz to 8 GHz / 18 GHz / 27 GHz

Featuring

- Real-Time Bandwidth (RTBW) up to 100 MHz
- Spurious Free Dynamic Range (SFDR) up to 100 dBc
- · Beautifully designed, lightweight, and silent
- · GigE networked and remote deployable

Overview

ThinkRF makes the cost-effective testing and monitoring of billions of wireless devices possible.

Built on innovative software-defined radio technologies, the ThinkRF R5550

Real-Time Spectrum Analyzer has the performance of traditional lab-grade spectrum analyzers at a fraction of the cost, size, weight and power consumption.

Designed for distributed deployment in the lab, in the field, or in a vehicle, the portable, fanless
ThinkRF R5550 provides the benefits of a highperformance software-defined RF receiver, digitizer and analyzer.

The R5550 analyzer is silent, lightweight, and offers improved spectral performance in a more rugged form factor.

Based on an optimized software-defined radio receiver architecture coupled with real-time digitization and digital signal processing. This enables wide bandwidth, deep dynamic range and 27 GHz frequency range in a small, stylish one-box platform.

On top of this market disruptive platform, ThinkRF provides a rich set of standard APIs and programming environments for easy and quick use with existing or new test and monitoring applications.

R5550 Performance

Large Frequency Range

The frequencies and bandwidths of commercial wireless systems have been increasing steadily to accommodate the growing demand for larger data rates. The R5550 supports frequency ranges from 9 kHz up to 27 GHz which enables testing of modern systems including tests such as third-order intercept.

Wide Instantaneous Bandwidth

Modern waveforms such as 802.11ac standard utilize waveforms that occupy up to 80 MHz in bandwidth and LTE-Advanced aims to utilize bandwidths of up to 100 MHz. The R5550 provides up to 100 MHz of instantaneous bandwidth in its direct conversion mode.

Deep Dynamic Range

RF measurements for characterizing IP3 generally require a dynamic range of around 100 dB. The R5550 supports multiple ADCs thereby providing wide IBW with 70 dB dynamic range and a narrow IBW with 100 dB dynamic range.

Real-Time Acquisition Memory and Trigger Capability

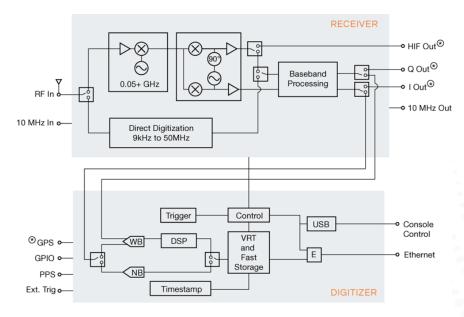
Modern waveforms such as those associated with the wireless LAN standards utilize packet-based signaling techniques. The R5550 enable real-time capture of multiple data packets by providing real-time hardware-based frequency domain triggering capability in conjunction with real-time memory storage of up to 128 million samples.

Fast Scan Speed

Scan speed determines how fast the analyzer can jump from analyzing one set of frequencies to another set. The R5550 has fast setup times and provides sophisticated capture control.

Small Size, Weight, and Power

The R5550 has a length and width less than a sheet of paper, weighs less than 3 kg and consumes less than 20 W of power making it a fraction of the size, weight and power of traditional lab-grade spectrum analyzers.



R5550 Architecture

The Receiver Front End

The R5550 has a patented hybrid receiver consisting of a super-heterodyne front-end with a backend that utilizes an I/Q mixer similar to that in a direct-conversion receiver. Depending on the frequency of the signals being analyzed, one of three receiver signal processing paths is selected. Signals in the frequency range 9 kHz to 50 MHz are directly digitized, while all other signals are translated to the frequencies of the first IF block via one of the two signal processing paths.

The IF block consists of a bank of multiple IF filters. Depending on the mode of operation, i.e. super-heterodyne or homodyne, either one or both outputs are utilized to process either 40 MHz or 100 MHz instantaneously. The IF analog outputs are digitized using one of two ADCs: a 125 MS/s sampling rate with a typical dynamic range of 70 dB; or a 300 kS/s sampling rate with a typical dynamic range in excess of 100 dB.


Availability depending on the product models. Refer to the product's datasheet.

The Digitizer

The digitized signal is continuously processed in. The R5550 provides digital signal processing including optional digital down conversion; optional frequency domain triggering; sophisticated capture controlled; and optionally stored in fast local memory for subsequent forwarding or streaming across the Ethernet.

User configurable sophisticated capture control combined with fast deep caching enables fast signal searches, sweeps, triggering and captures of only the signals of interest.

The R5550 digitizer has a dual-core embedded microprocessor with operating system, control, management and remote maintenance application. It supports the SCPI standard for user control and VITA VRT for data path.

OPTIONAL DEPENDING ON APPLICATION

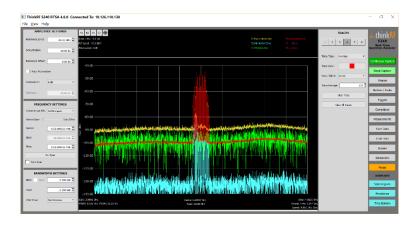
R5550 Extensible Hardware Interfaces

Whether you're looking for a flexible receiver to integrate with your existing digitizer solution or you need powerful, cost-effective spectrum analyzer hardware to pair with your software, the R5550 Real-Time Spectrum Analyzer is a universal and versatile platform designed for use across wireless industries and applications.

R5550-408P High Sensitivity Option

ThinkRF also provides a higher sensitivity option for the 8 GHz variant of the R5550 Real-Time Spectrum Analyzer (R5550-408P). This is achieved through the incorporation of an additional pre-amp stage and filters to improve the overall sensitivity level.

- 10 MHz input and output clock references for multiunit synchronization
- Analog I/Q and HIF outputs enable OEM high speed digitizers
- GPIO for external triggers.
- 10/100/1G Ethernet port for control and networking
- +12 V DC power input allowing automobile sources and personal mobility with an external battery
- External support for 80 MHz and 160 MHz RTBW (optional)


R5550 Spectrum Analysis Applications

ThinkRF S240 Real-Time Spectrum Analysis Application Software

By utilizing the power of the R5550, the S240 application has all the standard features you expect from a traditional lab spectrum analyzer as well as powerful features such as real-time triggering.

The S240 is designed to run on Windows PC. Simply install the software and connect your device through an Ethernet or Internet connection and you're ready to get started.

With the S240's simple and intuitive user interface you'll be using your new device in no time.

Keysight 89600 VSA®

Support for the Keysight 89600 VSA provides a comprehensive set of software tools for demodulation and vector signal analysis enabling users to monitor complex waveforms in more locations.

R5550 APIs and Programming Environments

By supporting a rich set of industry-leading standard protocols, the R5550 can easily integrate into your new or existing applications.

Python™ and PyRF development framework

PyRF enables rapid development of powerful applications that leverage the new generation of measurement-grade software-defined radio technology. It is built on the Python Programming Language and includes feature-rich libraries, example applications and source code and is openly available, allowing commercialization of solutions through BSD open licensing.

NI LabVIEW®

Easily and quickly integrate the R5550 into your existing or new NI LabVIEW® based acquisition, measurement, automated test and validation systems.

MATLAB®

ThinkRF provides MATLAB® drivers for connecting to ThinkRF's R5550 Real-Time Spectrum Analyzers and MATLAB® program code examples to get you started towards developing your own.

C/C++ Drivers and DLL

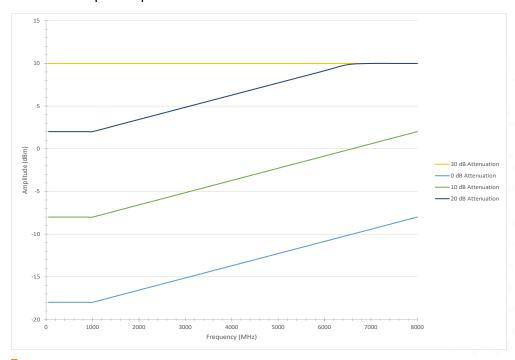
Underneath our rich set of APIs and programming environments is the C/C++ driver and DLL which abstracts the SCPI command and VITA VRT dataflow from the R5550.

R5550 Standard Protocols

Compliance with standard protocols provides you both multi-vendor independence and device interoperability.

SCPI VITA

SCPI and VITA VRT


The R5550 supports the Standard Commands for Programmable Instruments (SCPI) for control and the VITA-49 Radio Transport (VRT) protocol for data flow.

ThinkRF provides extensive documentation and examples for programming and interfacing at the SCPI and VITA-49 VRT level.

RF and Digitization Specifications

Frequency		
Frequency Ranges	9 kHz to 8, 18 or 27 GHz	
Frequency Reference	±1.0 ppm ±1.0 ppm 0°C to 55°C ±1.0 ppm per year	Accuracy at room temperature Stability over temperature Aging
Real-time bandwidth (RTBW)	0.1 / 10 / 40 /100 MHz	
Probability of Intercept (POI)	≥ 25.552 µs signal duration ≤ 17.360 µs signal duration	For 100% POI For 0% POI
Spurious free dynamic range (SFDR)	60 dBc (typical) 70 dBc (typical) 100 dBc (typical)	100 MHz RTBW 10 / 40 MHz RTBW 0.1 MHz RTBW
Amplitude		
Amplitude Accuracy 25 °C ± 5 °C	± 2.00 dB typical	50 MHz to 27 GHz
Measurement Range Attenuator Range	Amplitude Ranges DANL to levels in figure below 0 to 30 dB in 10 dB steps	R5550-408 (8GHz) 8 GHz only
Maximum Safe RF Input Level	+10 dBm, 10 V DC	

Maximum input amplitude level for R5550-408

Maximum input amplitude level for R5550-408 for different input attenuation levels (typical).

RF and Digitization Specifications

Displayed Average Noise Level (DANL)

Third Order Intercept (TOI) at max gain		+12 dBm, typical		At 1 GHz (R5550-408 only)
27 GHz			- 148 dBm/Hz	1111111111
26 GHz			- 150 dBm/Hz	
25 GHz			- 153 dBm/Hz	
24 GHz			- 155 dBm/Hz	
23 GHz			- 153 dBm/Hz	
22 GHz			- 152 dBm/Hz	
21 GHz			- 153 dBm/Hz	
20 GHz			- 154 dBm/Hz	
19 GHz			- 149 dBm/Hz	
18 GHz		- 144 dBm/Hz	- 156 dBm/Hz	
17 GHz		- 150 dBm/Hz	- 156 dBm/Hz	
16 GHz		- 157 dBm/Hz	- 157 dBm/Hz	
15 GHz		- 160 dBm/Hz	- 157 dBm/Hz	
14 GHz		- 154 dBm/Hz	- 154 dBm/Hz	
13 GHz		- 151 dBm/Hz	- 157 dBm/Hz	
12 GHz		- 158 dBm/Hz	- 157 dBm/Hz	
11 GHz		- 156 dBm/Hz	- 160 dBm/Hz	
10 GHz		- 160 dBm/Hz	- 161 dBm/Hz	
9 GHz		- 158 dBm/Hz	- 161 dBm/Hz	
8 GHz	- 144 dBm/Hz	- 160 dBm/Hz	- 161 dBm/Hz	
7 GHz	- 150 dBm/Hz	- 153 dBm/Hz	- 155 dBm/Hz	
6 GHz	- 149 dBm/Hz	- 157 dBm/Hz	- 157 dBm/Hz	
5 GHz	- 150 dBm/Hz	- 158 dBm/Hz	- 158 dBm/Hz	
4 GHz	- 151 dBm/Hz	- 162 dBm/Hz	- 162 dBm/Hz	
3 GHz	- 152 dBm/Hz	- 158 dBm/Hz	- 157 dBm/Hz	
2 GHz	- 154 dBm/Hz	- 154 dBm/Hz	- 153 dBm/Hz	
1 GHz	- 156 dBm/Hz	- 160 dBm/Hz	- 159 dBm/Hz	
0.5 GHz	- 155 dBm/Hz	- 160 dBm/Hz	- 159 dBm/Hz	
0.1 GHz	- 157 dBm/Hz	- 161 dBm/Hz	- 160 dBm/Hz	
Frequency (GHz)	8 GHz (typical)	18 GHz (typical)	27 GHz (typical)	
At 25 °C ± 5 °C, typical				

Spectral Purity			
SSB Phase noise 25°C ± 5°C At 1 GHz Measured locked to an external 10MHz oscillator and measured with external oscillator not present	With External 10MHz oscillator -90 dBc/Hz -93 dBc/Hz -98 dBc/Hz -106 dBc/Hz -120 dBc/Hz	Without External 10MHz oscillator -90 dBc/Hz -92 dBc/Hz -99 dBc/Hz -109 dBc/Hz -118 dBc/Hz	Carrier Offset 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz
Digitization			
Data Acquisition A/D Converter Sampling Rate and Resolution	125 MS/s,14 bit 300 kS/s, 24 bit		10 / 40 / 100 MHz RTBW 0.1 MHz RTBW
Sweep Rate	Up to 28 GHz/s @ 10 kHz RBW		40 MHz IBW
Stream Rate (directly from device)	360 Mbit/s		

General Specifications

Connectors

RF In SMA female, 50 $\,\Omega$ 10 MHz Reference In and Out SMA female, 50 $\,\Omega$ Analog I and Q Out SMA female, 50 $\,\Omega$ HIF Out SMA female, 50 $\,\Omega$

10/100/1000 Ethernet RJ45
USB Console Type B mini

GPIO 25-pin male D-Subminiature

Power Coaxial Type A: 5.5 mm OD, 2.5 mm ID

Status Indicators

PLL Lock / 10 MHz reference clock

status

Ethernet Link and Activity Status

CPU and Power Status

Refer to R5550 User Manual

Power

Physical Power Supply Use AC Wall Power Adaptor provided Input AC 120V-240V/Output +12V Power Consumption 23W with Power Adaptor provided (418, 427) At room temperature

25W Will Tower Adaptor provided (410, 421) At 100m temper

17W with Power Adaptor provided (408)

Physical

Operating Temperature Range 0°C to +50°C
Storage Temperature Range -40°C to +85°C
Warm up time 30 minutes

Size 257.3 x 193.7 x 66 mm (10.13 x 7.63 x 2.61 With mounting feet

inches)

257.3 x 193.7 x 60 mm (10.13 x 7.63 x 2.36

inches)

Weight 2.7 kg (6 lbs.)

Security Kensington Security Slot

Regulatory Compliance

RoHS Compliance RoHS

Marks CE European Union

EMC Directive 2014/30/EU EN 61326-1:2013 Electromagnetic Compatibility

Low Voltage Directive 2006/95/EC EN 61010-1:2010 Class 1 Safety

FCC

Without mounting feet

Located on back end-plate

Software Specifications

S240 Real-Time Spectrum Analysis Sof	itware		
Resolution Bandwidth (RBW)			
Range	0.272 kHz to 488.28 kHz	10 / 40 / 100 MHz RTBW	
	0.71 Hz to 1271.56 Hz	0.1 MHz RTBW	
Windowing	Hanning		
Traces	6	Clear/Write, Trace Average, Max Hold, Min Hold	
Markers	12		
Modes	Normal (Tracking), Delta, Fixed	Peak Search, Next Peak, Next Left/Right,	
Marker Frequency Resolution	0.01 Hz	Center	
Record/Playback	VITA Radio Transport (VRT)	VITA-49.0 – 2007 Draft 0.21	
Preferences	Save/Load Settings	Save settings for easy recall	
Export Data	CSV	Comma Separated Values	
APIs and Protocols			
Python™	PyRF RTSA		
LabVIEW	LabVIEW Base Development System for \	LabVIEW Base Development System for Windows (version 2014 and up)	
MATLAB®	MATLAB® Release 2014b	MATLAB® Release 2014b	
C/C++	ISO/IEC 14882:2011	ISO/IEC 14882:2011	
SCPI	IEEE 488.2 - Standard Commands for Pro	IEEE 488.2 - Standard Commands for Programmable Instruments	
VRT	VITA-49 Radio Transport	VITA-49 Radio Transport	
Recommended PC			
Operating System	Windows 7, 8, 10 (32 or 64)	For best performance, a dedicated PC is	
Minimum RAM Size	4 GB	recommended	
Minimum Free Hard Disk Space	2 GB		
Ethernet Port	1 GigE		
Display Resolution	1920 x 1080		

Ordering Information

Base Units	Part Number	Description
8 GHz RTSA	R5550-408	9 kHz to 8 GHz, RTBW up to 100 MHz
18 GHz RTSA	R5550-418	9 kHz to 18 GHz, RTBW up to 100 MHz
27 GHz RTSA	R5550-427	9 kHz to 27 GHz, RTBW up to 100 MHz
8 GHz RTSA	R5550-408P	9 kHz to 8 GHz, RTBW up to 100 MHz, higher sensitivity option
8 GHz RTSA	R5550-408-WBIQ	9 kHz to 8 GHz, RTBW up to 160 MHz, Wideband option
18 GHz RTSA	R5550-418-WBIQ	9 kHz to 18 GHz, RTBW up to 160 MHz, Wideband option
27 GHz RTSA	R5550-427-WBIQ	9 kHz to 27 GHz, RTBW up to 160 MHz, Wideband option

74-0092-190408

Ordering Information

R5550 Power Plug Options	Description	
0	North American power plug (115 V, 60 Hz)	
1	Universal Euro power plug (220 V, 50 Hz)	
2	United Kingdom power plug (240 V, 50 Hz)	
3	Australia power plug (240 V, 50 Hz)	
4	Switzerland power plug (220 V, 50 Hz)	
5	Japan power plug (100 V, 50/60 Hz)	
6	China power plug (50 Hz)	
7	India power plug (50 Hz)	
Accessories		
Software Included	S240	Real-Time Spectrum Analysis Software
Rack Shelf	R5550-RACK-SHELF	19" rack shelf supports two horizontally mounted R5550s or WSA5000s
Vehicular Power Conditioner	P120-012	

Contact us for more information on 5G applications www.thinkrf.com sales@thinkrf.com +1.613.369.5104

