

CMPA1D1J001S 12.7 – 18 GHz, 1 W GaN HPA

Description

Wolfspeed's CMPA1D1J001S is a 1W package MMIC HPA utilizing Wolfspeed's high performance, 0.15um GaN on SiC production process. The CMPA1D1J001S operates from 12.7-18 GHz and supports both radar and communication applications within both military and commercial markets. The CMPA1D1J001S achieves 1 W of saturated output power with 23 dB of large signal gain and typically 30% power-added efficiency under CW operation.

Packaged in a 4x3 mm plastic overmold QFN, the CMPA1D1J001S provides superior broadband performance and environmental robustness in a small form factor allowing customers to improve SWaP-C benchmarks in their next-generation systems.

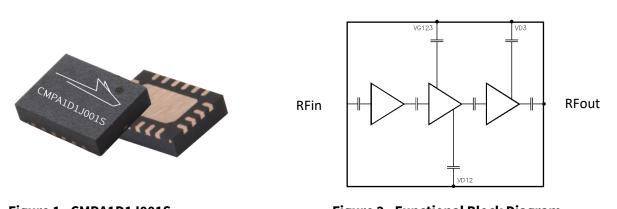


Figure 1. CMPA1D1J001S

Features

- Psat: 1W
- PAE: 30 %
- LSG: 23 dB
- S21: 27 dB
- S11: -10 dB
- S22: -8 dB
- CW operatio
- CW operation
- Small 4 x 3 mm footprint

Applications

- Military and Commercial Radar and Communications
- General Purpose Broadband Amplifier

Note: Features are typical performance across frequency under 25C operation. Please reference performance charts for additional information.

© 2023 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, I The information in the document is subject to change without notice.

Absolute Maximum Ratings

Parameter	Symbol	Units	Value	Conditions
Drain to Source Voltage	V _{DSS}	V	84	
Drain Voltage	V _D	V	28	
Gate Voltage	V _G	V	-8, +2	
Drain Current	l _D	А	0.8	
Gate Current	l _G	mA	1.0	
Input Power	P _{in}	dBm	10	
Dissipated Power	P _{diss}	W	4.4	85°C
Storage Temperature	T_{stg}	°C	-55, +150	
Mounting Temperature	TJ	°C	260	30 seconds
Junction Temperature	TJ	°C	225	
Output Mismatch Stress	VSWR	Ψ	5:1	

Recommended Operating Conditions

Parameter	Symbol	Units	Typical Value	Conditions
Drain Voltage	Vd	V	22	
Gate Voltage	Vg	V	-2.0	
Drain Current	Idq	mA	30	
Input Power	Pin	dBm	8	
Case Temperature	Tcase	°C	-40 to 85	

RF Specifications

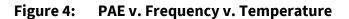
Test conditions unless otherwise noted: Vd=22 V, Idq=30mA, CW, Pin = 8 dBm, T_{base} =25 °C

Parameter	Units	Frequency	Min	Typical	Мах	Conditions
Frequency	GHz		13		18	
		12.7		30.5		
Output Power	dBm	15.5		31.5		
		18		30.5		
Power-added		12.7		28		
Efficiency	%	15.5		35		
Efficiency		18		34		
		12.7		22.5		
LSG	dB	15.5		23.5		
		18		22.5		
		12.7		27		
Small-Signal Gain	dB	15.5		30		Pin = -20 dBm
		18		24		
Input Return Loss	dB			-10		Pin = -20 dBm
Output Return Loss	dB			-8		Pin = -20 dBm

40

35

30

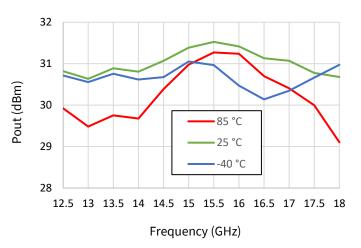

25

20

15

PAE (%)

Figure 3: Pout v. Frequency v. Temperature



85 °C

25 °C

-40 °C

12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18

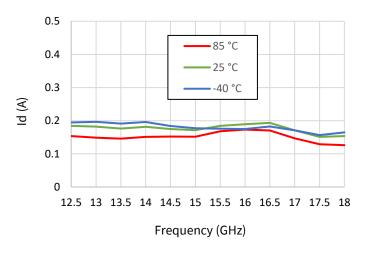
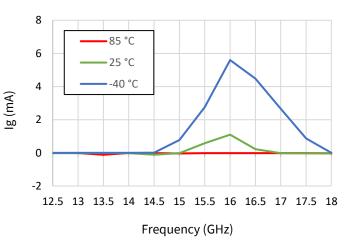



Figure 6: Ig v. Frequency v. Temperature

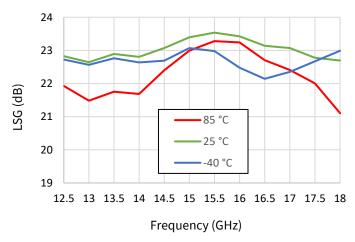
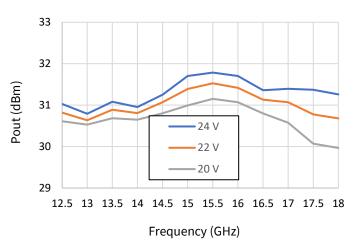


Figure 9:

40

35

30


25

20

15

PAE (%)

Figure 8: Pout v. Frequency v. Vd

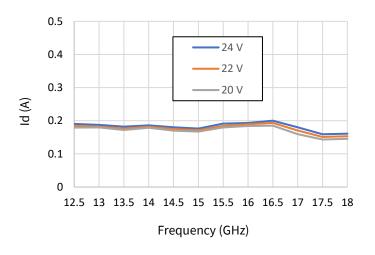
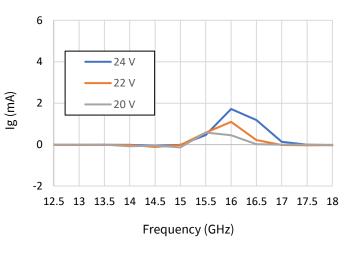
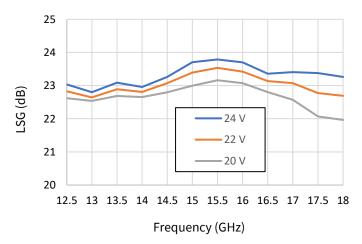



Figure 11: Ig v. Frequency v. Vd

PAE v. Frequency v. Vd

24 V


22 V

20 V

12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18

Frequency (GHz)

Rev. 0.0 – February 2023

60 mA

30 mA

15 mA

12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18

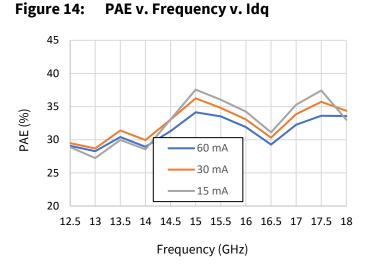
Frequency (GHz)

Test conditions unless otherwise noted: Vd=22 V, Idq=30mA, CW, Pin = 8 dBm, T_{base}=25 °C, Frequency: 15.5GHz

Figure 13: Pout v. Frequency v. Idq

33

32


31

30

29

28

Pout (dBm)

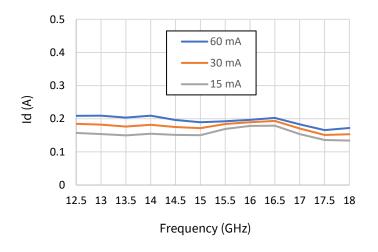
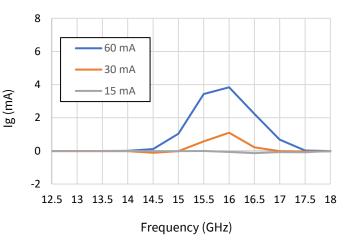
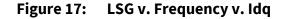
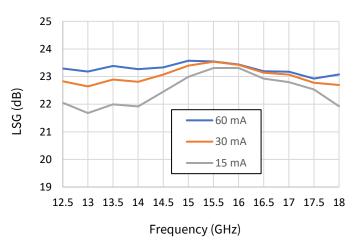
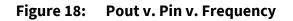





Figure 16: Ig v. Frequency v. Idq

Rev. 0.0 – February 2023

12.7 GHz


15.5 GHz

18 GHz

6

8

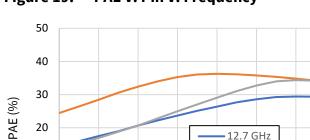
10

34

32

30

28


26

24

22

-4

Pout (dBm)

15.5 GHz

18 GHz

4

6

8

10

0

2

Pin (dBm)

4

-2

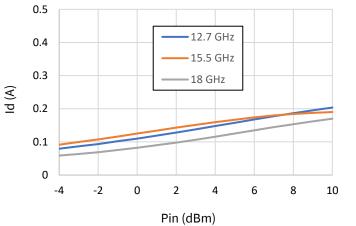
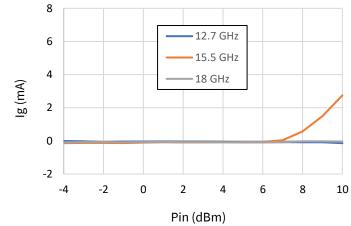


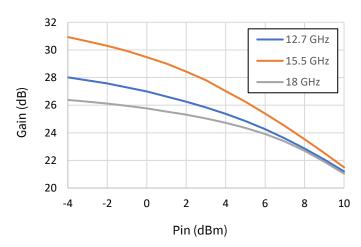
Figure 21: Ig v. Pin v. Frequency

0

2

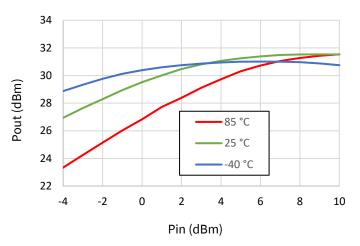

Pin (dBm)

-2


10

0

-4



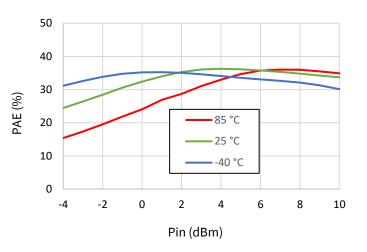


Figure 25: Id v. Pin v. Temperature

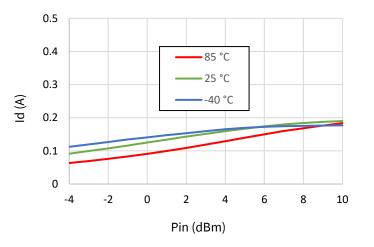
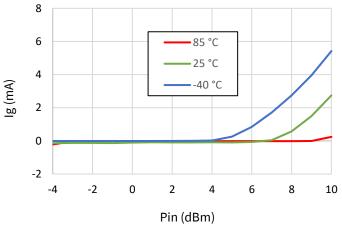



Figure 26: Ig v. Pin v. Temperature

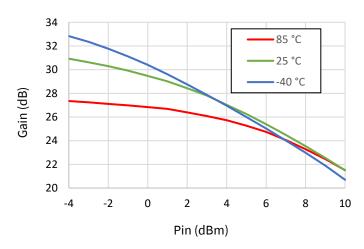


Figure 28:

Pout v. Pin v. Vd

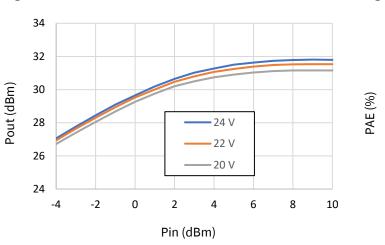
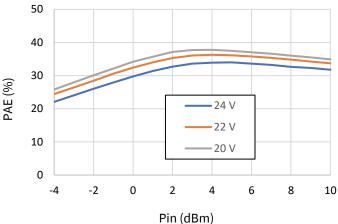




Figure 29: PAE v. Pin v. Vd

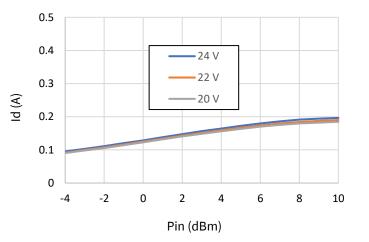
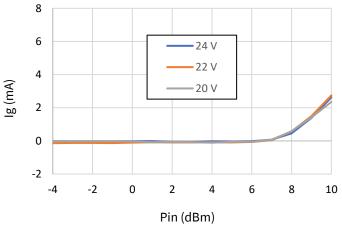
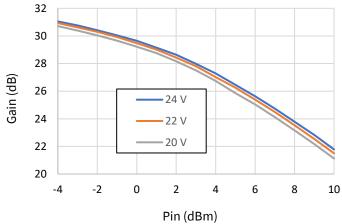




Figure 31: Ig v. Pin v. Vd

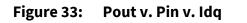
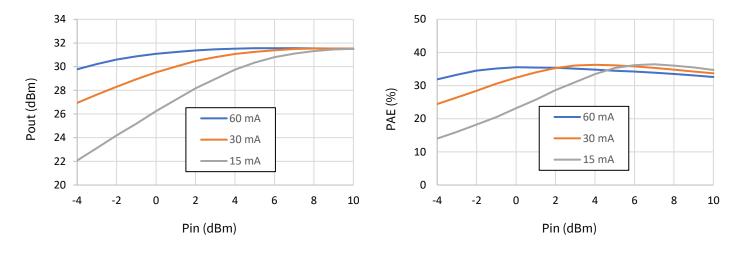
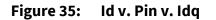




Figure 34: PAE v. Pin v. Idq

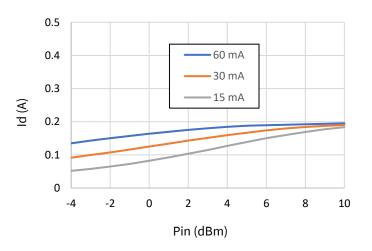
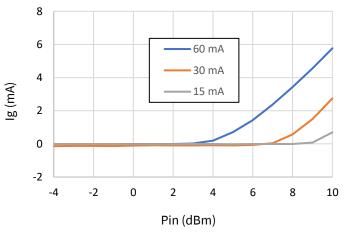
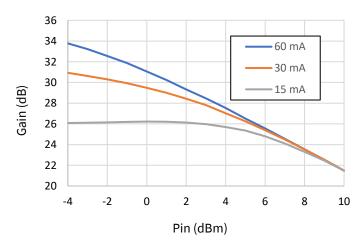
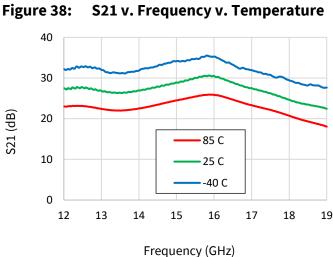
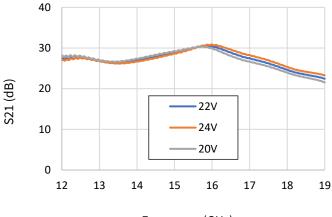
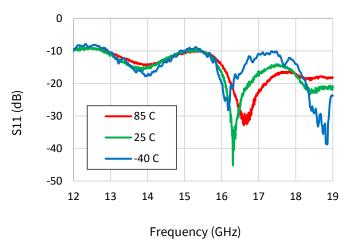




Figure 36: Ig v. Pin v. Idq


Figure 39:

S21 v. Frequency v. Vd

Frequency (GHz)

Figure 40: S11 v. Frequency v. Temperature

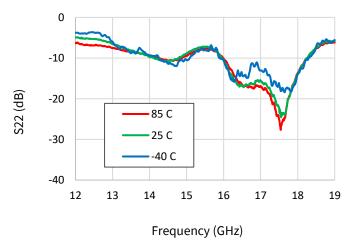


Figure 41: S11 v. Frequency v. Vd

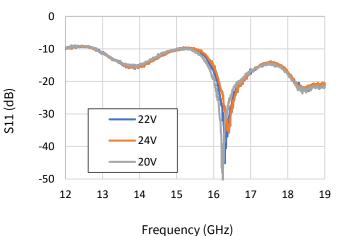


Figure 43: S22 v. Frequency v. Vd

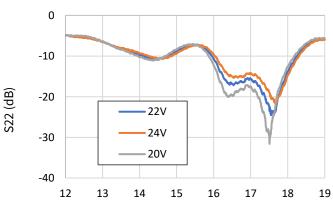
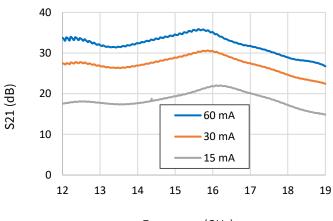
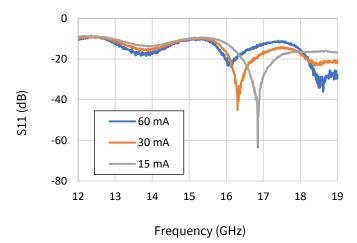
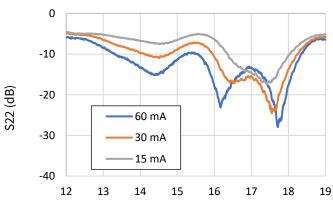
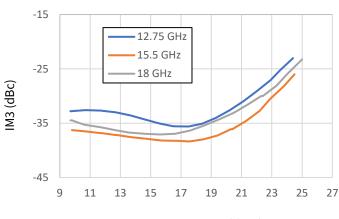
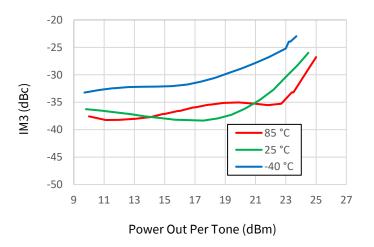




Figure 44: S21 v. Frequency v. Idq



Frequency (GHz)


Figure 45: S11 v. Frequency v. Idq


Test conditions unless otherwise noted: Vd=22 V, Idq=30mA, CW, Pin = 8 dBm, T_{base}=25 °C, Frequency: 15.5GHz, Tone Spacing = 10 MHz, T_{base}=25 °C



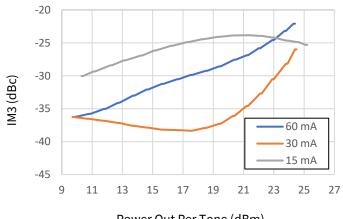

Figure 47: IM3 v. Pout/tone v. Frequency

Figure 49: IM3 v. Pout/tone v. Temperature

Power Out Per Tone (dBm)

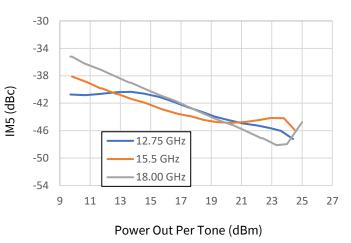


Figure 50:

IM5 v. Pout/tone v. Temperature

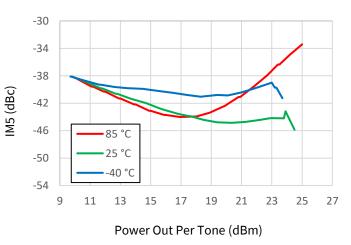
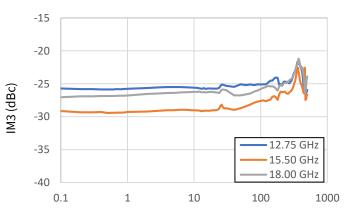
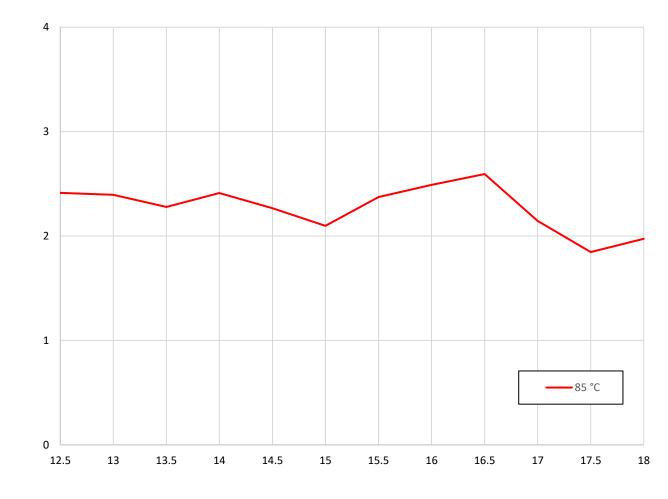
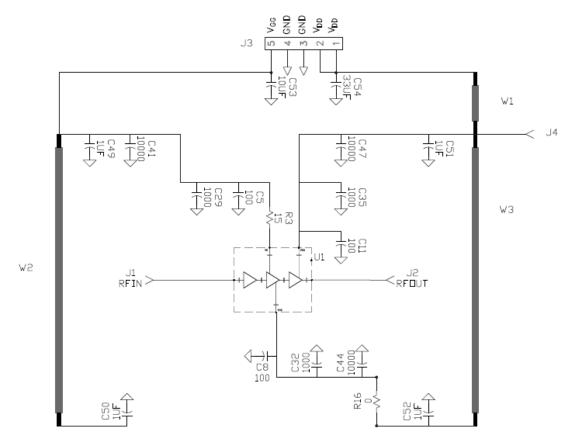



Figure 52: IM3 v. Tone Spacing v. Frequency

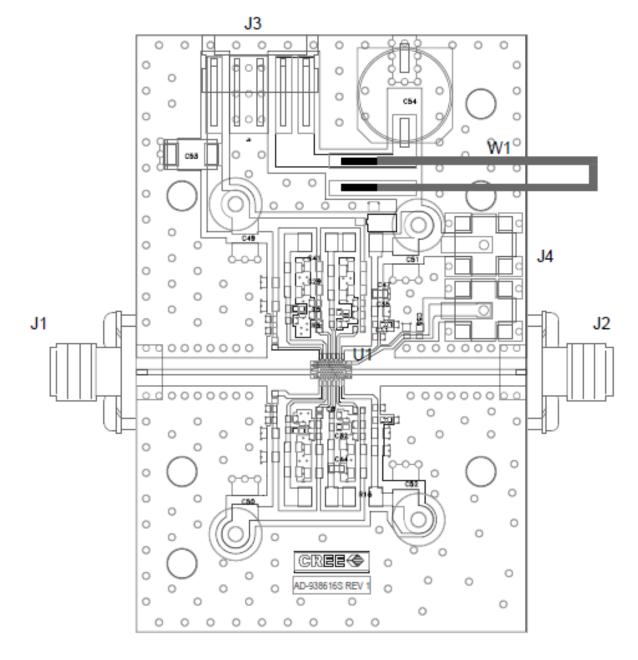


Tone Spacing (MHz)


Thermal Characteristics

Parameter	Symbol	Value	Operating Conditions	
Operating Junction Temperature	TJ	161.3	Freq = 15.5 GHz, V_d = 22 V, I_{dq} = 30 mA, I_{drive} = 190 mA,	
Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	31.8	 Pin = 8 dBm, P_{out} = 31 dBm, P_{diss} = 2.4 W, T_{case} = 85°C, CW 	

Power Dissipation v. Frequency (Tcase = 85°C)



CMPA1D1J001S-AMP1 Evaluation Board Schematic Drawing

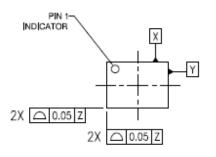
CMPA1D1J001S-AMP1 Evaluation Board Bill of Materials

Reference Designator	Description	Qty			
C47, C41, C44	COG, 10nF, +/-5%, 100V, 0603	3			
C54	CAP, 33 UF, 20%, G CASE	1			
C53	CAP, 10UF, 16V, TANTALUM				
C11, C55, C5, C8	CAP, 100pF, +/-5%, 50V, 0402	4			
R3	RES 15 OHM, +/-1%, 1/16W, 0402	1			
C35, C29, C32	CAP, 1000PF, +/-5%, 100V, 0603	3			
C49, C50, C51, C52	CAP, 1UF, 100V	4			
R16	RES 0.0 OHM 1/16W 1206 SMD	1			
-	PCB, RF-35, .010 THK, 3X4, 3-STAGE, QFN, CMPA1D1J001S	1			
BASEPLATE 2.6"x1.7"x0.25" AL 3x4 QFN		1			
-	2-56 SOC HD SCREW 3/16 SS				
-	#2 SPLIT LOCKWASHER SS				
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2			
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1			
J3	HEADER RT>PLZ .1CEN LK 5POS	1			
W2, W3	WIRE, BLACK, 20 AWG				
W1	WIRE, BLACK, 22 AWG				
U1	CMPA1D1J001S				

CMPA1D1J001S-AMP1 Evaluation Board Assembly Drawing

Note: W2 and W3 are connected on backside

Bias On Sequence

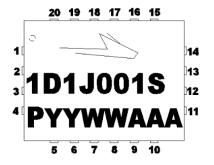

- 1. Ensure RF is turned-off
- 2. Apply pinch-off voltage of -5 V to the gate (Vg)
- 3. Apply nominal drain voltage (Vd)
- 4. Adjust Vg to obtain desired quiescent drain current (Idq)
- 5. Apply RF

Bias Off Sequence

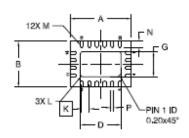
- 1. Turn RF off
- 2. Apply pinch-off to the gate (Vg=-5V)
- 3. Turn off drain voltage (Vd)
- 4. Turn off gate voltage (Vg)

Product Dimensions

SEATING PLANE



NOTES: UNLESS OTHERWISE SPECIFIED


 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

20

- NUMBER OF LAND PADS:
- THE CONTENTS OF THIS DRAWING ARE INTENDED TO REPRESENT THE PRODUCT IN MARKETING GRAPHICS ONLY AND NOT INTENDED TO BE USED FOR ANY PRODUCTION OR INTERNAL QUALIFICATION PURPOSE.

SIDE VIEW

	INCHES			MILLIMETERS		
DIM	MIN	TYP	MAX	MIN	TYP	MAX
A	.156	.157	.159	3.95	4,00	4,05
В	116	118	120	2,95	3,00	3,05
С	.033	.035	.037	0.85	0,90	0,95
D	.098	.104	.108	2.50	2.65	2.75
G	.059	.065	.069	1,50	1.65	1,75
к	-	.020	-	-	0,50	-
L	.004	.006	.008	0.10	0.15	0.20
M	.002	.003	.004	0.050	0.085	0,110
N	.012	.016	.020	0.30	0.40	0.50
Р	.005	.008	.010	0.13	0.20	0.25
R	.000	.001	.002	0.00	0.02	0.05
S	-	.008	-	-	0.20	-

PIN	DESC	PIN	DESC
1	NC	11	RFGND
2	RFGND	12	RFOUT
3	RFIN	13	RFGND
4	RFGND	14	NC
5	NC	15	VD3
6	NC	16	NC
7	NC	17	NC
8	VD1,VD2	18	VG
9	NC	19	NC
10	NC	20	NC

Electrostatic Discharge (ESD) Classification

Parameter	Symbol	Class	Classification Level	Test Methodology
Human body Model	HBM	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

Part Number	Description	MOQ Increment	Image
CMPA1D1J001S	12.7 – 18 GHz, 1W GaN MMIC		CMPAIDLOOIS
CMPA1D1J001S-AMP1	Evaluation Board w/ PA	1 Each	
For more information, pleas	e contact.		

Mailing Address

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact

RFMarketing@wolfspeed.com

Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2023 Wolfspeed, Inc. All rights reserved. Wolfspeed[®] and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: <u>https://www.wolfspeed.com/legal/patents</u>

The information in this document is subject to change without notice.